Semiholomorphic structures
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 1055-1071.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $\operatorname{SU}(4)$-instanton equation on complex-oriented manifolds, introduce the notion of a semiholomorphic structure on bundles over these manifolds, and derive a condition for the notions of holomorphy and semiholomorphy to coincide.
@article{IM2_1998_62_5_a8,
     author = {N. A. Tyurin},
     title = {Semiholomorphic structures},
     journal = {Izvestiya. Mathematics },
     pages = {1055--1071},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a8/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Semiholomorphic structures
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1055
EP  - 1071
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a8/
LA  - en
ID  - IM2_1998_62_5_a8
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Semiholomorphic structures
%J Izvestiya. Mathematics 
%D 1998
%P 1055-1071
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a8/
%G en
%F IM2_1998_62_5_a8
N. A. Tyurin. Semiholomorphic structures. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 1055-1071. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a8/

[1] Donaldson S., Thomas R., Gauge Theory in Higher Dimensions, Preprint 28, Oxford, 1996 | MR

[2] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | MR | Zbl