The etale and equivariant cohomology of a~real algebraic variety
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 1013-1034.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the equivariant cohomology of a real algebraic variety is applied to solve problems stated in terms of etale cohomology. In particular, the Witt group of the Enriques surface is calculated.
@article{IM2_1998_62_5_a6,
     author = {V. A. Krasnov},
     title = {The etale and equivariant cohomology of a~real algebraic variety},
     journal = {Izvestiya. Mathematics },
     pages = {1013--1034},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The etale and equivariant cohomology of a~real algebraic variety
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 1013
EP  - 1034
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a6/
LA  - en
ID  - IM2_1998_62_5_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The etale and equivariant cohomology of a~real algebraic variety
%J Izvestiya. Mathematics 
%D 1998
%P 1013-1034
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a6/
%G en
%F IM2_1998_62_5_a6
V. A. Krasnov. The etale and equivariant cohomology of a~real algebraic variety. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 1013-1034. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a6/

[1] Bloch S., Ogus A., “Gersten's conjecture and the homology of schemes”, Ann. Scient. Éc. Norm. Sup. 4 ème Serie, 7 (1974), 181–202 | MR

[2] Colliot-Thélène J.-L., Parimala R., “Real components of algebraic varieties and etale cohomology”, Invent. math., 101 (1990), 81–99 | DOI | MR | Zbl

[3] Degtyarev A., Kharlamov V., “Distribution of the components of a real Enriques surface”, Topology (to appear)

[4] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[5] Mangolte F., van Hamel J., “Algebraic cycles and topology of real Enriques surfaces”, Composito Math. (to appear) | Zbl

[6] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[7] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[8] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR

[9] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl

[10] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl

[11] Krasnov V. A., “O gruppe Brauera veschestvennoi algebraicheskoi poverkhnosti”, Matem. zametki, 60:6 (1996), 935–938 | MR | Zbl

[12] Krasnov V. A., “Ekvivariantnye kogomologii veschestvennoi algebraicheskoi poverkhnosti i ikh prilozheniya”, Izv. RAN. Ser. matem., 60:6 (1996), 101–126 | MR | Zbl

[13] Krasnov V. A., “Veschestvennye algebraicheskie $\mathrm {GM}$-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[14] Krasnov V. A., “Veschestvennye algebraicheskie $\mathrm {GM}\mathbb Z$-poverkhnosti”, Izv. RAN. Ser. matem., 62:4 (1998), 51–80 | MR | Zbl

[15] Nikulin V. V., Sujatha R., “On Brauer group of real Enriques surfaces”, J. reine angew. Math., 444 (1993), 115–154 | MR | Zbl

[16] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic geometry and its applications, Yaroslavl', 1992, 114–136

[17] Sujatha R., “Witt groups of real projective surfaces”, Math. Ann., 288 (1990), 89–101 | DOI | MR

[18] U I Syan, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 | MR