Topological characteristics of non-smooth functionals
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 969-984
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish infinite-dimensional variants of the Poincare–Hopf theorem for many-valued vector fields generated by operators of monotonic type. We suggest conditions for the stabilization of the homology groups of closed subsets of a Banach space when approximated by finite-dimensional sections. Emphasis is given to the study of topological characteristics of Lebesgue sets of Lipschitz functionals defined on a closed convex subset of a reflexive space.
@article{IM2_1998_62_5_a4,
author = {V. S. Klimov},
title = {Topological characteristics of non-smooth functionals},
journal = {Izvestiya. Mathematics },
pages = {969--984},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a4/}
}
V. S. Klimov. Topological characteristics of non-smooth functionals. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 969-984. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a4/