Non-traditional conditions for the existence of an optimal control for the Goursat--Darboux equations
Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 929-951.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem for the non-linear Goursat–Darboux equations in the case when the quality functional depends only on the phase variable. We show that a natural analogue of the “traditional” criterion for the existence of an optimal control for this problem is not valid. Under certain assumptions on the equations we obtain necessary and sufficient conditions under which any functional of the type mentioned above attains a minimum. The traditional condition (the convexity of the set of contingencies) is supplemented here by the following essential condition: the right-hand side of the differential equation is affine with respect to each of the two lowest derivatives of the phase variable.
@article{IM2_1998_62_5_a2,
     author = {O. A. Danilova and A. S. Matveev},
     title = {Non-traditional conditions for the existence of an optimal control for the {Goursat--Darboux} equations},
     journal = {Izvestiya. Mathematics },
     pages = {929--951},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a2/}
}
TY  - JOUR
AU  - O. A. Danilova
AU  - A. S. Matveev
TI  - Non-traditional conditions for the existence of an optimal control for the Goursat--Darboux equations
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 929
EP  - 951
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a2/
LA  - en
ID  - IM2_1998_62_5_a2
ER  - 
%0 Journal Article
%A O. A. Danilova
%A A. S. Matveev
%T Non-traditional conditions for the existence of an optimal control for the Goursat--Darboux equations
%J Izvestiya. Mathematics 
%D 1998
%P 929-951
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a2/
%G en
%F IM2_1998_62_5_a2
O. A. Danilova; A. S. Matveev. Non-traditional conditions for the existence of an optimal control for the Goursat--Darboux equations. Izvestiya. Mathematics , Tome 62 (1998) no. 5, pp. 929-951. http://geodesic.mathdoc.fr/item/IM2_1998_62_5_a2/

[1] Gamkrelidze R. V., “On some extremal problems in the theory of differential equations”, SIAM J. on Control, 3 (1965), 106–128 | DOI | MR | Zbl

[2] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[4] Cesary L., “Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I: II”, Trans. AMS, 124 (1966), 369–430 | DOI | MR

[5] Matveev A. S., “Distributed systems with nontraditional conditions of optimal control existence”, Proceedings of the Third European Control Conference (the Netherlands), Groningen, 1993, 1377–1380

[6] Plotnikov V. I., Sumin V. I., “Problema ustoichivosti nelineinykh sistem Gursa–Darbu”, Differents. uravn., 1972, no. 5, 845–856 | MR | Zbl

[7] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[8] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, Nauka, M., 1985 | MR | Zbl

[9] Lyusternik A. A., Sobolev S. L., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR | Zbl