Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 833-856
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of extremal interpolation in the mean for large averaging intervals with the minimal value of the norm of a linear differential operator with constant real coefficients in the case when the extremal functions are $L$-splines.
@article{IM2_1998_62_4_a7,
author = {V. T. Shevaldin},
title = {Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines},
journal = {Izvestiya. Mathematics },
pages = {833--856},
publisher = {mathdoc},
volume = {62},
number = {4},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a7/}
}
V. T. Shevaldin. Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 833-856. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a7/