The subdifferential and the directional derivatives of the maximum of a~family of convex functions
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 807-832

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with calculating the directional derivatives and the subdifferential of the maximum of a family of convex functions under weakened compactness conditions on the indexing set (or in the absence of such conditions).
@article{IM2_1998_62_4_a6,
     author = {V. N. Solov'ev},
     title = {The subdifferential and the directional derivatives of the maximum of a~family of convex functions},
     journal = {Izvestiya. Mathematics },
     pages = {807--832},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a6/}
}
TY  - JOUR
AU  - V. N. Solov'ev
TI  - The subdifferential and the directional derivatives of the maximum of a~family of convex functions
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 807
EP  - 832
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a6/
LA  - en
ID  - IM2_1998_62_4_a6
ER  - 
%0 Journal Article
%A V. N. Solov'ev
%T The subdifferential and the directional derivatives of the maximum of a~family of convex functions
%J Izvestiya. Mathematics 
%D 1998
%P 807-832
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a6/
%G en
%F IM2_1998_62_4_a6
V. N. Solov'ev. The subdifferential and the directional derivatives of the maximum of a~family of convex functions. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 807-832. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a6/