Differential operators and differential calculus in quantum groups
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 673-694.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with abstract differential operators in bialgebras and Hopf algebras (quantum groups). We prove density theorems and structure theorems for the algebras of differential operators defined by dual pairs of Hopf algebras $A$$B$ and indicate connections with Drinfel'd's quantum double and differential geometry in quantum groups.
@article{IM2_1998_62_4_a1,
     author = {D. P. Zhelobenko},
     title = {Differential operators and differential calculus in quantum groups},
     journal = {Izvestiya. Mathematics },
     pages = {673--694},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a1/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Differential operators and differential calculus in quantum groups
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 673
EP  - 694
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a1/
LA  - en
ID  - IM2_1998_62_4_a1
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Differential operators and differential calculus in quantum groups
%J Izvestiya. Mathematics 
%D 1998
%P 673-694
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a1/
%G en
%F IM2_1998_62_4_a1
D. P. Zhelobenko. Differential operators and differential calculus in quantum groups. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 673-694. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a1/

[1] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1977

[3] Zhelobenko D. P., “Differentsialnye operatory v graduirovannykh algebrakh”, Izv. RAN. Ser. matem., 60:2 (1996), 49–72 | MR | Zbl

[4] Ashieri P., Schupp P., Vector fields on quantum groups, Preprint q-alg./9505023, Univ. di Pisa, 1995

[5] Bernard D., “Quantum Lie algebras and differential calculus on quantum groups”, Progr. Theor. Phys. Suppl., 102 (1990), 49–66 | DOI | MR | Zbl

[6] Bonechi F., Giachetti R., Maciocco R., Sorace E., Tarlini M., Quantum double and differential calculi, Preprint q-alg./9507004, Univ. di Firenze, 1995 | Zbl

[7] Chari V., Pressley A., A Guide to Quantum Groups, Cambridge U. P., 1995 | MR

[8] Drinfeld V. G., “Quantum Groups”, Proc. Intern. Congress of Math. Berkeley (1986), AMS, Providence, 1987 ; Zapiski nauch. sem. LOMI, 155, Nauka, L., 1986, 18–49 | MR | Zbl

[9] De Concini C., Lybashenko V., “Quantum function algebra at roofs of 1”, Adv. in Math., 108:2 (1994), 205–262 | DOI | MR | Zbl

[10] Joseph A., Quantum Groups and Their Primitive Ideals, Springer, N. Y., 1995 | MR

[11] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 122 (1990), 249–260 | DOI | MR

[12] Kashiwara M., Global crystal bases of quantum groups, Preprint RIMS, Kyoto Univ., 1992 | MR

[13] Lusztig G., An Introduction to Quantum Groups, Birkhäuser, 1995 | MR

[14] Woronowicz S. L., “Tannaka–Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups”, Invent. Math., 93 (1988), 35–76 | DOI | MR | Zbl

[15] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[16] Woronowicz S. L., “Quantum deformation of Lorentz group”, Comm. Math. Phys., 130 (1990), 381–431 | DOI | MR | Zbl

[17] Zhelobenko D. P., “Crystal bases and the problem of reduction in classical and quantum modules”, Adv. in Math. Sci. AMS Transl. (2), 169 (1995), 183–202 | MR | Zbl

[18] Zhelobenko D. P., “Differential operators on quantum groups and graded algebras”, Proc. XXI Intern. Coloquium Group Theor. Methods in Physics, Goslar, 1996

[19] Novikov S. P., “Razlichnye udvoeniya algebr Khopfa. Algebry operatorov na kvantovykh gruppakh. Kompleksnye kobordizmy”, UMN, 47:5 (1992), 189–190 | Zbl

[20] Zhelobenko D. P., “New aspects of differential calculus on quantum groups”, Proc. V Wigner Symposium, Wien, 1997 | MR | Zbl