Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1998_62_4_a1, author = {D. P. Zhelobenko}, title = {Differential operators and differential calculus in quantum groups}, journal = {Izvestiya. Mathematics }, pages = {673--694}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a1/} }
D. P. Zhelobenko. Differential operators and differential calculus in quantum groups. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 673-694. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a1/
[1] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959
[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1977
[3] Zhelobenko D. P., “Differentsialnye operatory v graduirovannykh algebrakh”, Izv. RAN. Ser. matem., 60:2 (1996), 49–72 | MR | Zbl
[4] Ashieri P., Schupp P., Vector fields on quantum groups, Preprint q-alg./9505023, Univ. di Pisa, 1995
[5] Bernard D., “Quantum Lie algebras and differential calculus on quantum groups”, Progr. Theor. Phys. Suppl., 102 (1990), 49–66 | DOI | MR | Zbl
[6] Bonechi F., Giachetti R., Maciocco R., Sorace E., Tarlini M., Quantum double and differential calculi, Preprint q-alg./9507004, Univ. di Firenze, 1995 | Zbl
[7] Chari V., Pressley A., A Guide to Quantum Groups, Cambridge U. P., 1995 | MR
[8] Drinfeld V. G., “Quantum Groups”, Proc. Intern. Congress of Math. Berkeley (1986), AMS, Providence, 1987 ; Zapiski nauch. sem. LOMI, 155, Nauka, L., 1986, 18–49 | MR | Zbl
[9] De Concini C., Lybashenko V., “Quantum function algebra at roofs of 1”, Adv. in Math., 108:2 (1994), 205–262 | DOI | MR | Zbl
[10] Joseph A., Quantum Groups and Their Primitive Ideals, Springer, N. Y., 1995 | MR
[11] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 122 (1990), 249–260 | DOI | MR
[12] Kashiwara M., Global crystal bases of quantum groups, Preprint RIMS, Kyoto Univ., 1992 | MR
[13] Lusztig G., An Introduction to Quantum Groups, Birkhäuser, 1995 | MR
[14] Woronowicz S. L., “Tannaka–Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups”, Invent. Math., 93 (1988), 35–76 | DOI | MR | Zbl
[15] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl
[16] Woronowicz S. L., “Quantum deformation of Lorentz group”, Comm. Math. Phys., 130 (1990), 381–431 | DOI | MR | Zbl
[17] Zhelobenko D. P., “Crystal bases and the problem of reduction in classical and quantum modules”, Adv. in Math. Sci. AMS Transl. (2), 169 (1995), 183–202 | MR | Zbl
[18] Zhelobenko D. P., “Differential operators on quantum groups and graded algebras”, Proc. XXI Intern. Coloquium Group Theor. Methods in Physics, Goslar, 1996
[19] Novikov S. P., “Razlichnye udvoeniya algebr Khopfa. Algebry operatorov na kvantovykh gruppakh. Kompleksnye kobordizmy”, UMN, 47:5 (1992), 189–190 | Zbl
[20] Zhelobenko D. P., “New aspects of differential calculus on quantum groups”, Proc. V Wigner Symposium, Wien, 1997 | MR | Zbl