Improved interpolation theorems for a~class of linear operators
Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 651-671.

Voir la notice de l'article provenant de la source Math-Net.Ru

New interpolation theorems are formulated for the class of operators that map the cone of positive functions into the cone of monotonic decreasing functions. These theorems are based on the concept of the $K^c$-functional. A formula for calculating the $K^c$-functional for some pairs of spaces is suggested. An example of an interpolation pair of spaces is considered in which the cones obtained with the help of Peetre's $K$-functional are different from those obtained using the $K^c$-functional.
@article{IM2_1998_62_4_a0,
     author = {E. I. Berezhnoi and V. I. Burenkov},
     title = {Improved interpolation theorems for a~class of linear operators},
     journal = {Izvestiya. Mathematics },
     pages = {651--671},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
AU  - V. I. Burenkov
TI  - Improved interpolation theorems for a~class of linear operators
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 651
EP  - 671
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a0/
LA  - en
ID  - IM2_1998_62_4_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%A V. I. Burenkov
%T Improved interpolation theorems for a~class of linear operators
%J Izvestiya. Mathematics 
%D 1998
%P 651-671
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a0/
%G en
%F IM2_1998_62_4_a0
E. I. Berezhnoi; V. I. Burenkov. Improved interpolation theorems for a~class of linear operators. Izvestiya. Mathematics , Tome 62 (1998) no. 4, pp. 651-671. http://geodesic.mathdoc.fr/item/IM2_1998_62_4_a0/

[1] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[2] Brudnyi Yu. A., Krein S. G., Semenov E. M., “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhniki. Matem. analiz, 24, VINITI, M., 1986, 3–164 | MR

[3] Brudniy Ju., Krugliak N., Interpolations Functors and Interpolations Spaces, North-Holland, 1991

[4] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[6] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningr. un-ta, L., 1985 | MR | Zbl

[7] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[8] Berezhnoi E. I., “Tochnye otsenki operatorov na konusakh v idealnykh prostranstvakh”, Tr. MI RAN, 204, 1993, 3–34 | MR | Zbl

[9] Sawyer E. T., “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96 (1991), 145–158 | MR

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[11] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, V. 1, Springer, N. Y., 1973 ; V. 2, 1979 | MR | Zbl

[12] Berezhnoi E. I., Zabreiko P. P., “Interpolyatsiya chastichno additivnykh operatorov”, DAN BSSR, 30:2 (1986), 108–111 | MR | Zbl

[13] Berezhnoy E. I., Zabreiko P. P., “Some interpolation theory for nonlinear operators”, Nonlinear Analysis, 12:2 (1988), 155–170 | DOI | MR

[14] Dmitriev V. I., Krein S. G., Ovchinnikov V. I., “Osnovy teorii interpolyatsii lineinykh operatorov”, Geometriya lineinykh prostranstv i teoriya operatorov, Yaroslavl, 1977, 31–75 | MR

[15] Lizorkin P. I., “Interpolyatsiya prostranstv $L^p$ s vesom”, DAN SSSR, 222:1 (1975), 32–35 | MR | Zbl

[16] Maligranda L., Persson L., “Interpolation between weighted $L^p$ and Lorentz spaces”, Bull. Pol. Acad. Sci. Math., 35:11–12 (1987), 765–768 | MR