The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 627-648

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method for separating multiple points of the spectrum in the reduction $B_n\downarrow B_{n-1}$ by introducing a non-semisimple intermediate subalgebra. We study the category of modules over this intermediate subalgebra that play the role of modules with highest weight.
@article{IM2_1998_62_3_a7,
     author = {V. V. Shtepin},
     title = {The intermediate orthogonal {Lie} algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations},
     journal = {Izvestiya. Mathematics },
     pages = {627--648},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/}
}
TY  - JOUR
AU  - V. V. Shtepin
TI  - The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 627
EP  - 648
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/
LA  - en
ID  - IM2_1998_62_3_a7
ER  - 
%0 Journal Article
%A V. V. Shtepin
%T The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
%J Izvestiya. Mathematics 
%D 1998
%P 627-648
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/
%G en
%F IM2_1998_62_3_a7
V. V. Shtepin. The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 627-648. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/