The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 627-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method for separating multiple points of the spectrum in the reduction $B_n\downarrow B_{n-1}$ by introducing a non-semisimple intermediate subalgebra. We study the category of modules over this intermediate subalgebra that play the role of modules with highest weight.
@article{IM2_1998_62_3_a7,
     author = {V. V. Shtepin},
     title = {The intermediate orthogonal {Lie} algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations},
     journal = {Izvestiya. Mathematics },
     pages = {627--648},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/}
}
TY  - JOUR
AU  - V. V. Shtepin
TI  - The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 627
EP  - 648
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/
LA  - en
ID  - IM2_1998_62_3_a7
ER  - 
%0 Journal Article
%A V. V. Shtepin
%T The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
%J Izvestiya. Mathematics 
%D 1998
%P 627-648
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/
%G en
%F IM2_1998_62_3_a7
V. V. Shtepin. The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 627-648. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/

[1] Veil G., Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR

[2] Gelfand I. M., Tsetlin M. L., “Konechnomernye predstavleniya gruppy ortogonalnykh matrits”, DAN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl

[3] Zhelobenko D. P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, UMN, 17:1 (1962), 27–119 | MR

[4] Shtepin V. V., “Promezhutochnye algebry Li i ikh konechnomernye predstavleniya”, Izv. RAN. Ser. matem., 57:6 (1993), 176–198 | MR | Zbl

[5] Shtepin V. V., “Razdelenie kratnykh tochek spektra v reduktsii $\mathrm {sp}(2n)\downarrow \mathrm {sp}(2n-2)$”, Funktsion. analiz i ego prilozh., 20:4 (1986), 93–95 | MR | Zbl

[6] Zhelobenko D. P., Kompaktnye gruppy Li ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[7] Jantzen J. G., “Moduln mit einem höchsten Gewicht”, Lect. Notes Math., 750 (1979), 1–182 | DOI | MR

[8] Zhelobenko D. P., “Analog bazisa Gelfanda–Tsetlina dlya simplekticheskikh algebr Li”, UMN, 42:6 (1987), 193–194 | MR

[9] Serr Zh. P., Gruppy i algebry Li, Mir, M., 1969 | MR | Zbl

[10] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[11] Shtepin V. V., “Ob odnom klasse konechnomernykh $\mathrm {sp}(2n-1)$-modulei”, UMN, 41:3 (1986), 207–208 | MR