The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 627-648
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest a method for separating multiple points of the spectrum in the reduction $B_n\downarrow B_{n-1}$ by introducing a non-semisimple intermediate subalgebra. We study the category of modules over this intermediate subalgebra that play the role of modules with highest weight.
@article{IM2_1998_62_3_a7,
author = {V. V. Shtepin},
title = {The intermediate orthogonal {Lie} algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations},
journal = {Izvestiya. Mathematics },
pages = {627--648},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/}
}
TY - JOUR
AU - V. V. Shtepin
TI - The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations
JO - Izvestiya. Mathematics
PY - 1998
SP - 627
EP - 648
VL - 62
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/
LA - en
ID - IM2_1998_62_3_a7
ER -
V. V. Shtepin. The intermediate orthogonal Lie algebra $\mathfrak b_{n-1/2}$ and its finite-dimensional representations. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 627-648. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a7/