Bounded solutions of linear almost periodic differential equations
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 581-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with bounded (on $\mathbb R_+$ or $\mathbb R$) solutions of the equation $\dot x=\mathcal A(t)x$ with recurrent (almost periodic) coefficients. We show that the zero solution of this equation is uniformly stable (bistable) if and only if all its solutions and the solutions of its limit equations are bounded on $\mathbb R_+$ ($\mathbb R$). These results are generalizations of the well-known theorem of Cameron–Johnson.
@article{IM2_1998_62_3_a5,
     author = {D. N. Cheban},
     title = {Bounded solutions of linear almost periodic differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {581--600},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a5/}
}
TY  - JOUR
AU  - D. N. Cheban
TI  - Bounded solutions of linear almost periodic differential equations
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 581
EP  - 600
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a5/
LA  - en
ID  - IM2_1998_62_3_a5
ER  - 
%0 Journal Article
%A D. N. Cheban
%T Bounded solutions of linear almost periodic differential equations
%J Izvestiya. Mathematics 
%D 1998
%P 581-600
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a5/
%G en
%F IM2_1998_62_3_a5
D. N. Cheban. Bounded solutions of linear almost periodic differential equations. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 581-600. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a5/

[1] Cameron R. H., “Almost periodic properties of bounded solutions of linear differential equations with almost periodic coefficients”, J. Math. Phys., 15 (1936), 73–81 | Zbl

[2] Johnson R. A., “On a Floquet theory for almost periodic, two-dimensional linear systems”, J. Differ. Equat., 37 (1980), 184–205 | DOI | MR | Zbl

[3] Cheban D. N., “O strukture tsentra Levinsona dissipativnoi dinamicheskoi sistemy”, Differents. uravn., 24:9 (1988), 1564–1576 | MR | Zbl

[4] Sibirskii K. S., Shube A. S., Poludinamicheskie sistemy, Shtiintsa, Kishinev, 1987 | MR

[5] Bronshtein I. U., Rasshireniya minimalnykh grupp preobrazovanii, Shtiintsa, Kishinev, 1975 | MR

[6] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[7] Zhikov V. V., “K probleme suschestvovaniya pochti periodicheskikh reshenii differentsialnykh i operatornykh uravnenii”, Matematika, Nauchn. tr. VVPI, 8, Vladimir, 1969, 94–188

[8] Zhikov V. V., “Monotonnost v teorii pochti periodicheskikh reshenii nelineinykh operatornykh uravnenii”, Matem. sb., 90:2 (1978), 214–228

[9] Saperstone S. H., Semidynamical systems in infinite dimensional spaces, Springer-Verlag, New York– Heidelberg–Berlin, 1981 | MR | Zbl

[10] Cheban D. N., “Globalnye attraktory beskonechnomernykh dinamicheskikh sistem, I”, Izv. AN RM. Matematika, 2(15) (1994), 12–21 | MR | Zbl

[11] Cheban D. N., Fakikh D. S., Globalnye attraktory dispersnykh dinamicheskikh sistem, Sigma, Kishinev, 1994

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[13] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6(258) (1987), 25–60 | MR | Zbl

[14] Sacker R. J., Sell G. R., “Existence of dichotomies and invariant splitings for linear differential systems, I”, J. Differ. Equat., 15 (1974), 429–458 | DOI | MR | Zbl

[15] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975 | MR

[16] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984 | MR

[17] Cheban D. N., Teoriya lineinykh differentsialnykh uravnenii (izbrannye glavy), Shtiintsa, Kishinev, 1980

[18] Cheban D. N., “Priznaki konvergentnosti nelineinykh sistem po pervomu priblizheniyu”, Differentsialnye uravneniya i ikh invarianty. Matematicheskie issledovaniya, no. 88, Shtiintsa, Kishinev, 1986, 144–150 | MR

[19] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[20] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[21] Izé A. F., “On a topological method for the analysis of the asymptotic behavior of dynamical systems and processes”, Complex analysis, functional analysis and approximation theory, North-Holland, 1986, 109–128 | MR | Zbl

[22] Belman R., Vvedenie v teoriyu matrits, Nauka, M., 1969

[23] Favard J., “Sur les équations differéntielles à coefficients presque-périodiques”, Acta math., 51 (1927), 31–81 | DOI | MR | Zbl

[24] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR