Real algebraic GM-varieties
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 465-491.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove necessary and sufficient conditions for a real algebraic variety to be a GM-variety. The results obtained are used to prove some congruences for the Euler characteristic.
@article{IM2_1998_62_3_a1,
     author = {V. A. Krasnov},
     title = {Real algebraic {GM-varieties}},
     journal = {Izvestiya. Mathematics },
     pages = {465--491},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a1/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real algebraic GM-varieties
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 465
EP  - 491
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a1/
LA  - en
ID  - IM2_1998_62_3_a1
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real algebraic GM-varieties
%J Izvestiya. Mathematics 
%D 1998
%P 465-491
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a1/
%G en
%F IM2_1998_62_3_a1
V. A. Krasnov. Real algebraic GM-varieties. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 465-491. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a1/

[1] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[2] Krasnov V. A., “Algebraicheskie tsikly na veschestvennom algebraicheskom $\operatorname {GM}$-mnogoobrazii”, Izv. AN. Ser. matem., 57:4 (1993), 153–173 | MR | Zbl

[3] Krasnov V. A., “O klassakh kogomologii, opredelennykh veschestvennymi tochkami veschestvennoi algebraicheskoi GM-poverkhnosti”, Izv. AN. Ser. matem., 57:5 (1993), 210–221 | MR | Zbl

[4] Kalinin I. O., “Kogomologicheskie kharakteristiki veschestvennykh proektivnykh giperpoverkhnostei”, Algebra i analiz, 3:2 (1991), 91–110 | MR

[5] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and its Applications, Yaroslavl', 1992, 113–136 | MR

[6] Krasnov V. A., “Ekvivariantnye kogomologii veschestvennoi algebraicheskoi poverkhnosti i ikh prilozheniya”, Izv. AN. Ser. matem., 60:6 (1996), 101–126 | MR | Zbl

[7] Degtyarev A., Kharlamov V., “Distribution of the components of real Enriques surface”, Topology (to appear)

[8] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR

[9] Nikulin V. V., Sujatha R., “On Brauer groups of real Enriques surfaces”, J. reine angew. Math., 444 (1993), S. 115–154. | MR

[10] Kharlamov V. M., “Topologicheskie tipy neosobykh poverkhnostei stepeni 4 v $\operatorname {RP}^3$”, Funktsion. analiz i ego prilozh., 10:4 (1976), 55–68 | MR | Zbl

[11] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funktsion. analiz i ego prilozh., 5:3 (1971), 1–9 | MR | Zbl

[12] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[13] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. AN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl

[14] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl

[15] Rokhlin V. A., “Sravneniya po modulyu 16 v shestnadtsatoi probleme Gilberta”, Funktsion. analiz i ego prilozh., 6:4 (1972), 58–64 | MR | Zbl