Three-block exceptional collections over Del Pezzo surfaces
Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 429-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study complete exceptional collections of coherent sheaves over Del Pezzo surfaces that consist of three blocks such that all Ext groups between the sheaves inside each block are zero. We show that the ranks of all sheaves in such a block are equal, and that the three ranks corresponding to a complete 3-block exceptional collection satisfy a Markov-type Diophantine equation, which is quadratic in each variable. For each Del Pezzo surface, there are finitely many such equations, and we give a complete list of them. The 3-string braid group acts by mutations on the set of complete 3-block exceptional collections. We describe this action. In particular, any orbit contains a 3-block collection the sum of whose ranks is minimal for the solutions of the corresponding Markov-type equation, and the orbits can be obtained from each other under tensoring with an invertible sheaf and the action of the Weyl group. This enables us to compute the number of orbits up to twisting.
@article{IM2_1998_62_3_a0,
     author = {B. V. Karpov and D. Yu. Nogin},
     title = {Three-block exceptional collections over {Del} {Pezzo} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {429--463},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a0/}
}
TY  - JOUR
AU  - B. V. Karpov
AU  - D. Yu. Nogin
TI  - Three-block exceptional collections over Del Pezzo surfaces
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 429
EP  - 463
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a0/
LA  - en
ID  - IM2_1998_62_3_a0
ER  - 
%0 Journal Article
%A B. V. Karpov
%A D. Yu. Nogin
%T Three-block exceptional collections over Del Pezzo surfaces
%J Izvestiya. Mathematics 
%D 1998
%P 429-463
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a0/
%G en
%F IM2_1998_62_3_a0
B. V. Karpov; D. Yu. Nogin. Three-block exceptional collections over Del Pezzo surfaces. Izvestiya. Mathematics , Tome 62 (1998) no. 3, pp. 429-463. http://geodesic.mathdoc.fr/item/IM2_1998_62_3_a0/

[1] Atiyah M. F., “Vector bundles over an elliptic curve”, Proc. Lond. Math. Soc., VII (1957), 414–452 | DOI | MR

[2] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1988), 25–44 | MR

[3] Gorodentsev A. L., “Perestroiki isklyuchitelnykh rassloenii na $\mathbb P^n$”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 3–15 | MR

[4] Gorodentsev A. L., Rudakov A. N., “Exceptional vector bundles on the projective spaces”, Duke Math. J., 54:1 (1987), 115–130 | DOI | MR | Zbl

[5] Gorodentsev A. L., “Isklyuchitelnye rassloeniya na poverkhnostyakh s podvizhnym antikanonicheskim klassom”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 740–757 | MR | Zbl

[6] Drezet J.-M., Le Potier J., “Fibrés stables et fibrés exceptionnels sur $\mathbb P_2$”, Ann. scient. ENS, 18:2 (1985), 193–244 | MR

[7] Drezet J.-M., “Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur $\mathbb P_2(\mathbb C)$”, Ann. Math., 275 (1986), 25–48 | DOI | MR | Zbl

[8] Drezet J.-M., “Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\mathbb P_2(\mathbb C)$”, J. Reine und Angew. Math., 380 (1987), 14–58 | MR | Zbl

[9] Drezet J.-M., “Variétés de modules extrémales de faisceaux semi-stables sur $\mathbb P_2(\mathbb C)$”, Ann. Math., 290:4 (1991), 727–770 | DOI | MR | Zbl

[10] Zyuzina S. Yu., “Konstruktivnost isklyuchitelnykh par vektornykh rassloenii na kvadrike”, Izv. AN SSSR. Ser. matem., 57:1 (1993), 183–191 | MR | Zbl

[11] Kuleshov S. A., Orlov D. O., “Isklyuchitelnye puchki na poverkhnostyakh del Petstso”, Izv. RAN. Ser. matem., 58:3 (1994), 53–87 | MR | Zbl

[12] Kuleshov S. A., Isklyuchitelnye i zhestkie puchki na poverkhnostyakh s antikanonicheskim klassom bez bazisnykh komponent, Preprint No 1, MK NMU, M., 1994 | MR

[13] Kuleshov S. A., The new proof of the main theorem about exceptional and rigid sheaves on $\mathbb P^2$, Preprint, MPI /95-11

[14] Manin Yu. I., Kubicheskie formy, Nauka, M., 1972 | MR

[15] Markov A. A., O binarnykh kvadratichnykh formakh polozhitelnogo opredeleniya, SPb., 1880

[16] Nogin D. Yu., “Spirali perioda chetyre i uravneniya tipa Markova”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 862–878

[17] Nogin D. Yu., “Helices on some Fano threefolds: Constructivity of semiorthogonal bases of $Ext{K}_{0}$”, Ann. ENS. Ser. 4, 27 (1994), 129–172 | MR | Zbl

[18] Rudakov A. N., “Isklyuchitelnye rassloeniya na $\mathbb P^2$ i chisla Markova”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 100–112

[19] Rudakov A. N., “Isklyuchitelnye rassloeniya na kvadrike”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 782–812