Invariant subspaces in some function spaces on symmetric spaces. II
Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 339-374
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a semisimple connected Lie group with finite centre, $K$ a maximal compact subgroup of $G$, and $M=G/K$ a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on $M$ that are invariant under the quasiregular representation of the group $G$. We consider the case when $M$ is a symplectic symmetric space of rank 1.
@article{IM2_1998_62_2_a5,
author = {S. S. Platonov},
title = {Invariant subspaces in some function spaces on symmetric spaces. {II}},
journal = {Izvestiya. Mathematics },
pages = {339--374},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a5/}
}
S. S. Platonov. Invariant subspaces in some function spaces on symmetric spaces. II. Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 339-374. http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a5/