Invariant subspaces in some function spaces on symmetric spaces. II
Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 339-374

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a semisimple connected Lie group with finite centre, $K$ a maximal compact subgroup of $G$, and $M=G/K$ a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on $M$ that are invariant under the quasiregular representation of the group $G$. We consider the case when $M$ is a symplectic symmetric space of rank 1.
@article{IM2_1998_62_2_a5,
     author = {S. S. Platonov},
     title = {Invariant subspaces in some function spaces on symmetric spaces. {II}},
     journal = {Izvestiya. Mathematics },
     pages = {339--374},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a5/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Invariant subspaces in some function spaces on symmetric spaces. II
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 339
EP  - 374
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a5/
LA  - en
ID  - IM2_1998_62_2_a5
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Invariant subspaces in some function spaces on symmetric spaces. II
%J Izvestiya. Mathematics 
%D 1998
%P 339-374
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a5/
%G en
%F IM2_1998_62_2_a5
S. S. Platonov. Invariant subspaces in some function spaces on symmetric spaces. II. Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 339-374. http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a5/