The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness
Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 313-318

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain upper estimates for the Lipschitz constants of the metric $\varepsilon$-projection operator $P$ in terms of the modules of convexity and smoothness of the space when the following three parameters are varied: the approximee $x$, the convex approximating set $M$, and the accuracy of approximation $\varepsilon>0$. These estimates are unimprovable in the class of all normed linear spaces. We use them to obtain new stability evaluations for continuous selectors of the operator $P$.
@article{IM2_1998_62_2_a4,
     author = {A. V. Marinov},
     title = {The {Lipschitz} constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness},
     journal = {Izvestiya. Mathematics },
     pages = {313--318},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a4/}
}
TY  - JOUR
AU  - A. V. Marinov
TI  - The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 313
EP  - 318
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a4/
LA  - en
ID  - IM2_1998_62_2_a4
ER  - 
%0 Journal Article
%A A. V. Marinov
%T The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness
%J Izvestiya. Mathematics 
%D 1998
%P 313-318
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a4/
%G en
%F IM2_1998_62_2_a4
A. V. Marinov. The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness. Izvestiya. Mathematics , Tome 62 (1998) no. 2, pp. 313-318. http://geodesic.mathdoc.fr/item/IM2_1998_62_2_a4/