The best approximation to the operator of the second mixed derivative
Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 191-200

Voir la notice de l'article provenant de la source Math-Net.Ru

Accurate estimates are derived for the best approximation to the operator of the second mixed derivative on some classes of functions of two variables. These classes are defined by partial derivatives of the second and third orders.
@article{IM2_1998_62_1_a5,
     author = {O. A. Timoshin},
     title = {The best approximation to the operator of the second mixed derivative},
     journal = {Izvestiya. Mathematics },
     pages = {191--200},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a5/}
}
TY  - JOUR
AU  - O. A. Timoshin
TI  - The best approximation to the operator of the second mixed derivative
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 191
EP  - 200
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a5/
LA  - en
ID  - IM2_1998_62_1_a5
ER  - 
%0 Journal Article
%A O. A. Timoshin
%T The best approximation to the operator of the second mixed derivative
%J Izvestiya. Mathematics 
%D 1998
%P 191-200
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a5/
%G en
%F IM2_1998_62_1_a5
O. A. Timoshin. The best approximation to the operator of the second mixed derivative. Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 191-200. http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a5/