On Frobenius traces
Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 157-190

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss a certain Diophantine property of Frobenius traces associated with an Abelian variety over a number field $k$ and apply it to prove the Mumford–Tate conjecture for 4$p$-dimensional Abelian varieties $J$ over $k$, where $p$ is a prime number, $p\geqslant 17$, or (under certain weak assumptions) $\operatorname{End}^0(J\otimes\overline k)$ is an imaginary quadratic extension of $\mathbb Q$.
@article{IM2_1998_62_1_a4,
     author = {S. G. Tankeev},
     title = {On {Frobenius} traces},
     journal = {Izvestiya. Mathematics },
     pages = {157--190},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On Frobenius traces
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 157
EP  - 190
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a4/
LA  - en
ID  - IM2_1998_62_1_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On Frobenius traces
%J Izvestiya. Mathematics 
%D 1998
%P 157-190
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a4/
%G en
%F IM2_1998_62_1_a4
S. G. Tankeev. On Frobenius traces. Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 157-190. http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a4/