The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points
Izvestiya. Mathematics, Tome 62 (1998) no. 1, pp. 19-53
Cet article a éte moissonné depuis la source Math-Net.Ru
We find the order of the best accuracy of reconstruction of functions in the Nikolskii and Besov classes (along with their derivatives up to a certain order) from their values at a given number of points.
@article{IM2_1998_62_1_a1,
author = {S. N. Kudryavtsev},
title = {The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points},
journal = {Izvestiya. Mathematics},
pages = {19--53},
year = {1998},
volume = {62},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/}
}
TY - JOUR AU - S. N. Kudryavtsev TI - The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points JO - Izvestiya. Mathematics PY - 1998 SP - 19 EP - 53 VL - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/ LA - en ID - IM2_1998_62_1_a1 ER -
S. N. Kudryavtsev. The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points. Izvestiya. Mathematics, Tome 62 (1998) no. 1, pp. 19-53. http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/
[1] Kudryavtsev S. N., “Vosstanovlenie funktsii vmeste s ikh proizvodnymi po znacheniyam funktsii v zadannom chisle tochek”, Izv. RAN. Ser. matem., 58:6 (1994), 79–104 | MR | Zbl
[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[3] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR
[4] Kudryavtsev S. N., “Nekotorye zadachi teorii priblizhenii dlya odnogo klassa funktsii konechnoi gladkosti”, Matem. sb., 183:2 (1992), 3–20