The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points
Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 19-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the order of the best accuracy of reconstruction of functions in the Nikolskii and Besov classes (along with their derivatives up to a certain order) from their values at a given number of points.
@article{IM2_1998_62_1_a1,
     author = {S. N. Kudryavtsev},
     title = {The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points},
     journal = {Izvestiya. Mathematics },
     pages = {19--53},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points
JO  - Izvestiya. Mathematics 
PY  - 1998
SP  - 19
EP  - 53
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/
LA  - en
ID  - IM2_1998_62_1_a1
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points
%J Izvestiya. Mathematics 
%D 1998
%P 19-53
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/
%G en
%F IM2_1998_62_1_a1
S. N. Kudryavtsev. The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points. Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 19-53. http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/