Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1998_62_1_a1, author = {S. N. Kudryavtsev}, title = {The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points}, journal = {Izvestiya. Mathematics }, pages = {19--53}, publisher = {mathdoc}, volume = {62}, number = {1}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/} }
TY - JOUR AU - S. N. Kudryavtsev TI - The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points JO - Izvestiya. Mathematics PY - 1998 SP - 19 EP - 53 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/ LA - en ID - IM2_1998_62_1_a1 ER -
S. N. Kudryavtsev. The best accuracy of reconstruction of finitely smooth functions from their values at a~given number of points. Izvestiya. Mathematics , Tome 62 (1998) no. 1, pp. 19-53. http://geodesic.mathdoc.fr/item/IM2_1998_62_1_a1/
[1] Kudryavtsev S. N., “Vosstanovlenie funktsii vmeste s ikh proizvodnymi po znacheniyam funktsii v zadannom chisle tochek”, Izv. RAN. Ser. matem., 58:6 (1994), 79–104 | MR | Zbl
[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[3] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR
[4] Kudryavtsev S. N., “Nekotorye zadachi teorii priblizhenii dlya odnogo klassa funktsii konechnoi gladkosti”, Matem. sb., 183:2 (1992), 3–20