Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_6_a5, author = {A. S. Tikhomirov}, title = {The variety of complete pairs of zero-dimensional subschemes of an algebraic surface}, journal = {Izvestiya. Mathematics }, pages = {1265--1291}, publisher = {mathdoc}, volume = {61}, number = {6}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a5/} }
A. S. Tikhomirov. The variety of complete pairs of zero-dimensional subschemes of an algebraic surface. Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1265-1291. http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a5/
[1] Burbaki N., Elementy matematiki. Algebra, Nauka, M., 1987 | MR
[2] Cheah J., The cohomology of smooth nested Hilbert schemes of points, Thesis, Univ. of Chicago, 1994
[3] Ellingsrud G., Stromme S. A., “On the homology of the Hilbert scheme of points in the plane”, Invent. math., 87 (1987), 343–352 | DOI | MR | Zbl
[4] Ellingsrud G., Stromme S. A., “On a cell decomposition of the Hilbert scheme of points in the plane”, Invent. math., 91 (1988), 365–370 ; Smoothness of $\widetilde{H_n\times S}$, Preprint, 1991 | DOI | MR | Zbl
[5] Fogarty J., “Algebraic families on an algebraic surface. II: The Picard scheme of the punctual Hilbert scheme”, Amer. J. Math., 95 (1973), 660–687 | DOI | MR | Zbl
[6] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR
[7] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[8] Hirschowitz A., “Rank techniques and jump stratifications”, Vector Bundles on Algebraic Varieties, Bombay Colloquium, Univ. Press, Oxford, 1984, 195–205
[9] Laksov D., “Completed quadrics and linear maps”, AMS. Proc. Symp. in Pure Math., 46 (1987), 371–387 | MR | Zbl
[10] Manin Yu. I., “Lektsii o $K$-funktore v algebraicheskoi geometrii”, UMN, 24:5 (1989), 3–86 | MR
[11] Matsumura H., Commutative Algebra, W. A. Benjamin Co., N. Y., 1970 | MR | Zbl
[12] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968
[13] Roberts J., Speiser R., “Schubert's enumeratuve geometry of triangles from a modern viewpoint”, Lecture Notes in Math., 862, 1981, 272–281 | MR | Zbl
[14] Tikhomirov A. S., “Gladkaya model punktualnykh skhem Gilberta poverkhnosti”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 318–334 | MR | Zbl