The variety of complete pairs of zero-dimensional subschemes of an algebraic surface
Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1265-1291.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the variety $X$ of zero-dimensional subschemes (that is, systems of points) $Z_1$ and $Z_2$ of given lengths $\deg Z_1=d_1$ and $\deg Z_2=d_2$ on a smooth projective algebraic surface $S$. The variety is realized as the blowing-up of the direct product $\operatorname{Hilb}_{d_1}S\times\operatorname{Hilb}_{d_2}S$ of Hilbert schemes of points along the incidence graph. It is proved that $X$ is naturally isomorphic to the variety of biflags $Z_1\subset Z\supset Z_2$, where $\deg Z=d_1+d_2$. We also study the problem of the smoothness of $X$. It is proved that $X$ is smooth for $d_1=1$ and an arbitrary $d_2\geqslant 1$ using the Kodaira–Spenser rank map in the theory of determinantal varieties and also in the case when $d_1=d_2=2$ by means of a direct geometric consideration.
@article{IM2_1997_61_6_a5,
     author = {A. S. Tikhomirov},
     title = {The variety of complete pairs of zero-dimensional subschemes of an algebraic surface},
     journal = {Izvestiya. Mathematics },
     pages = {1265--1291},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a5/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - The variety of complete pairs of zero-dimensional subschemes of an algebraic surface
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 1265
EP  - 1291
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a5/
LA  - en
ID  - IM2_1997_61_6_a5
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T The variety of complete pairs of zero-dimensional subschemes of an algebraic surface
%J Izvestiya. Mathematics 
%D 1997
%P 1265-1291
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a5/
%G en
%F IM2_1997_61_6_a5
A. S. Tikhomirov. The variety of complete pairs of zero-dimensional subschemes of an algebraic surface. Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1265-1291. http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a5/

[1] Burbaki N., Elementy matematiki. Algebra, Nauka, M., 1987 | MR

[2] Cheah J., The cohomology of smooth nested Hilbert schemes of points, Thesis, Univ. of Chicago, 1994

[3] Ellingsrud G., Stromme S. A., “On the homology of the Hilbert scheme of points in the plane”, Invent. math., 87 (1987), 343–352 | DOI | MR | Zbl

[4] Ellingsrud G., Stromme S. A., “On a cell decomposition of the Hilbert scheme of points in the plane”, Invent. math., 91 (1988), 365–370 ; Smoothness of $\widetilde{H_n\times S}$, Preprint, 1991 | DOI | MR | Zbl

[5] Fogarty J., “Algebraic families on an algebraic surface. II: The Picard scheme of the punctual Hilbert scheme”, Amer. J. Math., 95 (1973), 660–687 | DOI | MR | Zbl

[6] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[7] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[8] Hirschowitz A., “Rank techniques and jump stratifications”, Vector Bundles on Algebraic Varieties, Bombay Colloquium, Univ. Press, Oxford, 1984, 195–205

[9] Laksov D., “Completed quadrics and linear maps”, AMS. Proc. Symp. in Pure Math., 46 (1987), 371–387 | MR | Zbl

[10] Manin Yu. I., “Lektsii o $K$-funktore v algebraicheskoi geometrii”, UMN, 24:5 (1989), 3–86 | MR

[11] Matsumura H., Commutative Algebra, W. A. Benjamin Co., N. Y., 1970 | MR | Zbl

[12] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[13] Roberts J., Speiser R., “Schubert's enumeratuve geometry of triangles from a modern viewpoint”, Lecture Notes in Math., 862, 1981, 272–281 | MR | Zbl

[14] Tikhomirov A. S., “Gladkaya model punktualnykh skhem Gilberta poverkhnosti”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 318–334 | MR | Zbl