@article{IM2_1997_61_6_a2,
author = {Yu. N. Drozhzhinov and B. I. Zavialov},
title = {Local {Tauberian} theorems in spaces of distributions related to cones, and their applications},
journal = {Izvestiya. Mathematics},
pages = {1171--1214},
year = {1997},
volume = {61},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/}
}
TY - JOUR AU - Yu. N. Drozhzhinov AU - B. I. Zavialov TI - Local Tauberian theorems in spaces of distributions related to cones, and their applications JO - Izvestiya. Mathematics PY - 1997 SP - 1171 EP - 1214 VL - 61 IS - 6 UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/ LA - en ID - IM2_1997_61_6_a2 ER -
Yu. N. Drozhzhinov; B. I. Zavialov. Local Tauberian theorems in spaces of distributions related to cones, and their applications. Izvestiya. Mathematics, Tome 61 (1997) no. 6, pp. 1171-1214. http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/
[1] Drozhzhinov Yu. N., Zavyalov B. I., “O mnogomernom analoge teoremy Lindelefa”, DAN SSSR, 262:2 (1982), 269–270 | MR
[2] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[3] Gelfand I. M., Shilov G. E., Prostranstva obobschennykh funktsii, Obobschennye funktsii. Vyp. 2, Fizmatgiz, M., 1958 | Zbl
[4] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii. Vyp. 3, Fizmatgiz, M., 1958 | MR | Zbl
[5] Zavyalov B. I., “Ob asimptoticheskikh svoistvakh funktsii, golomorfnykh v trubchatykh konusakh”, Matem. sb., 136:1 (1988), 97–114 | MR | Zbl
[6] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[7] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR
[8] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR
[9] Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tipa Khardi–Littlvuda dlya znakoneopredelennykh mer v konuse”, Matem. sb., 186:5 (1995), 49–68 | MR | Zbl
[10] Chirka E. M., “Teoremy Lindelefa i Fatu v $\mathbb C^n$”, Matem. sb., 92 (1973), 622–644 | MR | Zbl