Local Tauberian theorems in spaces of distributions related to cones, and their applications
Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1171-1214.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we introduce and study special spaces of distributions related to a given cone. These spaces occupy an intermediate position between the space of temperate distributions and the class of distributions concentrated on a cone. The properties of these spaces are investigated. In particular, we prove that they are convolution algebras. Quasi-asymptotic properties of distributions belonging to these spaces are thoroughly studied. To this end we prove several complex Tauberian and Abelian theorems in which the role of the integral transformation is played by the Laplace transformation. This transformation establishes an isomorphism between these spaces and the classes of functions holomorphic in special wedge-shaped domains. These results are applied to the study of the asymptotic behaviour of functions holomorphic in wedge-shaped domains at boundary points. A local theorem on non-compensation of singularities of holomorphic functions is proved.
@article{IM2_1997_61_6_a2,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Local {Tauberian} theorems in spaces of distributions related to cones, and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {1171--1214},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Local Tauberian theorems in spaces of distributions related to cones, and their applications
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 1171
EP  - 1214
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/
LA  - en
ID  - IM2_1997_61_6_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Local Tauberian theorems in spaces of distributions related to cones, and their applications
%J Izvestiya. Mathematics 
%D 1997
%P 1171-1214
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/
%G en
%F IM2_1997_61_6_a2
Yu. N. Drozhzhinov; B. I. Zavialov. Local Tauberian theorems in spaces of distributions related to cones, and their applications. Izvestiya. Mathematics , Tome 61 (1997) no. 6, pp. 1171-1214. http://geodesic.mathdoc.fr/item/IM2_1997_61_6_a2/

[1] Drozhzhinov Yu. N., Zavyalov B. I., “O mnogomernom analoge teoremy Lindelefa”, DAN SSSR, 262:2 (1982), 269–270 | MR

[2] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[3] Gelfand I. M., Shilov G. E., Prostranstva obobschennykh funktsii, Obobschennye funktsii. Vyp. 2, Fizmatgiz, M., 1958 | Zbl

[4] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii. Vyp. 3, Fizmatgiz, M., 1958 | MR | Zbl

[5] Zavyalov B. I., “Ob asimptoticheskikh svoistvakh funktsii, golomorfnykh v trubchatykh konusakh”, Matem. sb., 136:1 (1988), 97–114 | MR | Zbl

[6] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[7] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[8] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[9] Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tipa Khardi–Littlvuda dlya znakoneopredelennykh mer v konuse”, Matem. sb., 186:5 (1995), 49–68 | MR | Zbl

[10] Chirka E. M., “Teoremy Lindelefa i Fatu v $\mathbb C^n$”, Matem. sb., 92 (1973), 622–644 | MR | Zbl