On the global solubility of the Monge--Ampere hyperbolic equations
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 1069-1111

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the solubility of the Cauchy problem for the Monge–Ampere hyperbolic equations, in particular, for quasi-linear equations with two independent variables. It is proved that this problem has a unique maximal solution in the class of multi-valued solutions. The notion of a multi-valued solution goes back to Monge, Lie, et al. It is an historical predecessor of the notion of a generalized solution in the Sobolev–Schwartz sense. The relationship between multi-valued and generalized solutions of linear differential equations is established.
@article{IM2_1997_61_5_a6,
     author = {D. V. Tunitsky},
     title = {On the global solubility of the {Monge--Ampere} hyperbolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1069--1111},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On the global solubility of the Monge--Ampere hyperbolic equations
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 1069
EP  - 1111
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/
LA  - en
ID  - IM2_1997_61_5_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On the global solubility of the Monge--Ampere hyperbolic equations
%J Izvestiya. Mathematics 
%D 1997
%P 1069-1111
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/
%G en
%F IM2_1997_61_5_a6
D. V. Tunitsky. On the global solubility of the Monge--Ampere hyperbolic equations. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 1069-1111. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/