On the global solubility of the Monge--Ampere hyperbolic equations
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 1069-1111.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the solubility of the Cauchy problem for the Monge–Ampere hyperbolic equations, in particular, for quasi-linear equations with two independent variables. It is proved that this problem has a unique maximal solution in the class of multi-valued solutions. The notion of a multi-valued solution goes back to Monge, Lie, et al. It is an historical predecessor of the notion of a generalized solution in the Sobolev–Schwartz sense. The relationship between multi-valued and generalized solutions of linear differential equations is established.
@article{IM2_1997_61_5_a6,
     author = {D. V. Tunitsky},
     title = {On the global solubility of the {Monge--Ampere} hyperbolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1069--1111},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On the global solubility of the Monge--Ampere hyperbolic equations
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 1069
EP  - 1111
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/
LA  - en
ID  - IM2_1997_61_5_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On the global solubility of the Monge--Ampere hyperbolic equations
%J Izvestiya. Mathematics 
%D 1997
%P 1069-1111
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/
%G en
%F IM2_1997_61_5_a6
D. V. Tunitsky. On the global solubility of the Monge--Ampere hyperbolic equations. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 1069-1111. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a6/

[1] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1 (1979), 137–165 | MR | Zbl

[2] Lychagin V. V., “Nelineinye differentsialnye uravneniya i kontaktnaya geometriya”, DAN SSSR, 238:2 (1978), 273–276 | MR | Zbl

[3] Kartan E., Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, Izd-vo MGU, M., 1962

[4] Vinogradov A. M., “Mnogoznachnye resheniya i printsip klassifikatsii nelineinykh differentsialnykh uravnenii”, DAN SSSR, 210:1 (1973), 11–14 | MR | Zbl

[5] Tunitskii D. V., “Mnogoznachnye resheniya giperbolicheskikh uravnenii Monzha–Ampera”, Differents. uravn., 29:12 (1993), 2178–2189 | MR

[6] Tunitsky D. V., “Hyperbolicity and multivalued solutions of Monge–Ampere equations”, AMS Translations. Ser. 2, 167, 245–260 | MR | Zbl

[7] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[8] Tunitskii D. V., “Zadacha Koshi dlya giperbolicheskikh uravnenii Monzha–Ampera”, Izv. RAN. Ser. matem., 57:4 (1993), 174–191

[9] Tunitskii D. V., “O kontaktnoi linearizatsii uravnenii Monzha–Ampera”, Izv. RAN. Ser. matem., 60:2 (1996), 195–200 | MR

[10] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[11] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[12] Bakelman I. Ya., Verner A. L., Kantor B. E., Vvedenie v differentsialnuyu geometriyu v “tselom”, Nauka, M., 1973 | MR | Zbl

[13] Lewy H., “Über das Anfangswert Problem eine hyperbolischen nichtlinearen Differentialgleichungen zweiter Ordnung in zwei Veränderlilichen”, Math. Ann., 98 (1927), 179–191 | DOI | MR | Zbl

[14] Hartman P., Wintner A., “On hyperbolic partial differential equations”, Amer. J. Math., 74:4 (1952), 834–864 | DOI | MR | Zbl

[15] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982 | MR | Zbl

[16] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[17] Tunitskii D. V., “O regulyarnom izometricheskom pogruzhenii v $E^3$ neogranichennykh oblastei otritsatelnoi krivizny”, Matem. sb., 134:1 (1987), 119–134 | MR

[18] Tunitskii D. V., “O zadache Koshi dlya uravnenii Monzha–Ampera giperbolicheskogo tipa”, Matem. zametki, 51:6 (1992), 80–90 | MR

[19] Lychagin V. V., “Geometriya i topologiya udarnykh voln”, DAN SSSR, 34:6 (1982), 551–555 | MR

[20] Lychagin V. V., “Geometricheskaya teoriya osobennostei reshenii nelineinykh differentsialnykh uravnenii”, Problemy geometrii, 20, VINITI, M., 1988, 207–247 | MR

[21] Postnikov M. M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[22] Khermander L., Analiz lineinykh differentsialnykh operatorov, T. 1, Mir, M., 1986

[23] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[24] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[25] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl