Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 969-994.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the minimal operator $H$ in $L^2(\mathbb R^m)$, $m\geqslant 2$, generated by a real formally self-adjoint singular elliptic second-order differential expression (DE) $\mathcal L$. The example of the differential operator $H=H_0$ corresponding to the DE $\mathcal L=\mathcal L_0=-\operatorname{div}a(|x|)\operatorname{grad}$, where $a(r)$, $r\in[0,+\infty)$, is a non-negative scalar function, is studied to determine the dependence of the deficiency indices of $H$ on the degree of smoothness of the leading coefficients in $\mathcal L$. The other result of this paper is a test for the self-adjontness of an operator $H$ without any conditions on the behaviour of the potential of $\mathcal L$ as $|x|\to+\infty$. These results have no direct analogues in the case of an elliptic DE $\mathcal L$.
@article{IM2_1997_61_5_a3,
     author = {Yu. B. Orochko},
     title = {Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$},
     journal = {Izvestiya. Mathematics },
     pages = {969--994},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 969
EP  - 994
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/
LA  - en
ID  - IM2_1997_61_5_a3
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$
%J Izvestiya. Mathematics 
%D 1997
%P 969-994
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/
%G en
%F IM2_1997_61_5_a3
Yu. B. Orochko. Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 969-994. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/

[1] Orochko Yu. B., “O svoistve globalnoi konechnoi skorosti rasprostraneniya ellipticheskogo differentsialnogo vyrazheniya vtorogo poryadka”, Differents. uravn., 18:10, 1764–1772 | MR | Zbl

[2] Orochko Yu. B., “Metod operatornogo kosinusa v zadache o suschestvennoi samosopryazhennosti nepoluogranichennogo simmetricheskogo operatora”, Ukr. matem. zhurn., 33:3 (1981), 348–355 | MR | Zbl

[3] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[4] Orochko Yu. B., “Metod giperbolicheskogo uravneniya v teorii operatorov tipa Shredingera s lokalno integriruemym potentsialom”, UMN, 43:2 (260) (1988), 43–86 | MR | Zbl

[5] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[7] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[8] Rofe–Beketov F. S., “Zamechanie v svyazi s mnogomernym obobscheniem teoremy G. Veilya o samosopryazhennosti”, Teoriya funktsii, funkts. analiz i ikh prilozh., Respublikanskii mezhvedomstv. nauchn. sb., no. 52, Kharkov, 1989, 88–90 | MR

[9] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[10] Orochko Yu. B., “Primery simmetricheskikh differentsialnykh operatorov na pryamoi s beskonechnymi indeksami defekta”, Funkts. analiz i ego prilozh., 28:2 (1994), 69–72 | MR | Zbl

[11] Ikebet T., Kato T., “Uniqueness of the selfadjoint extension of singular elliptic operators”, Arch. Rational Mech. Anal., 9:1 (1962), 77–92 | MR

[12] Stetkär–Hansen H., “A generalization of a theorem of Wienholtz concerning essential selfadjointness of singular elliptic operators”, Math. Scand., 9:1 (1966), 108–112 | MR

[13] Knowles I., “On the essential self-adjointness for singular elliptic differential operators”, Math. Ann., 227:2 (1977), 152–172 | DOI | MR

[14] Devinatz A., “Selfadjointness of second order degenerate-elliptic operators”, Indiana Univ. Math. J., 27:2 (1978), 255–266 | DOI | MR

[15] Orochko Yu. B., Giperbolicheskie printsipy lokalizatsii v teorii ellipticheskikh samosopryazhennykh operatorov vtorogo poryadka, Dis. ...d-ra fiz.-mat. nauk, M., 1984, S. 312 | Zbl

[16] Perelmuter M. A., Semenov Yu. A., “O suschestvennoi samosopryazhennosti ellipticheskikh operatorov vtorogo poryadka s izmerimymi koeffitsientami”, Ukr. matem. zhurn., 37:2 (1985), 191–198 | MR

[17] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[18] Orochko Yu. B., “Lokalnaya konechnaya skorost rasprostraneniya giperbolicheskogo uravneniya v zadache o samosopryazhennosti stepenei ellipticheskogo differentsialnogo operatora vtorogo poryadka”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 298–314 | MR | Zbl