Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$
Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 969-994

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the minimal operator $H$ in $L^2(\mathbb R^m)$, $m\geqslant 2$, generated by a real formally self-adjoint singular elliptic second-order differential expression (DE) $\mathcal L$. The example of the differential operator $H=H_0$ corresponding to the DE $\mathcal L=\mathcal L_0=-\operatorname{div}a(|x|)\operatorname{grad}$, where $a(r)$, $r\in[0,+\infty)$, is a non-negative scalar function, is studied to determine the dependence of the deficiency indices of $H$ on the degree of smoothness of the leading coefficients in $\mathcal L$. The other result of this paper is a test for the self-adjontness of an operator $H$ without any conditions on the behaviour of the potential of $\mathcal L$ as $|x|\to+\infty$. These results have no direct analogues in the case of an elliptic DE $\mathcal L$.
@article{IM2_1997_61_5_a3,
     author = {Yu. B. Orochko},
     title = {Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$},
     journal = {Izvestiya. Mathematics },
     pages = {969--994},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 969
EP  - 994
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/
LA  - en
ID  - IM2_1997_61_5_a3
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$
%J Izvestiya. Mathematics 
%D 1997
%P 969-994
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/
%G en
%F IM2_1997_61_5_a3
Yu. B. Orochko. Some properties of the deficiency indices of symmetric singular elliptic second-order operators in~$L^2(\mathbb R^m)$. Izvestiya. Mathematics , Tome 61 (1997) no. 5, pp. 969-994. http://geodesic.mathdoc.fr/item/IM2_1997_61_5_a3/