Asymptotic splitting of boundary-value problems for the Helmholtz equation in a~strip with ``permeable'' boundaries
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 877-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a boundary-value problem in a strip for the Helmholtz equation. This problem is a mathematical model of a hydro-acoustic waveguide with a permeable boundary. The boundary condition involves a translation-invariant operator symbolizing impendance. It is assumed that the coefficient of the Helmholtz equation varies slowly along the strip. Theorems on the unique solubility of the problem are proved, asymptotic formulae (with respect to the slowness parameter) are derived for its solution, and the practical significance of the results is discussed.
@article{IM2_1997_61_4_a9,
     author = {S. L. Edelstein},
     title = {Asymptotic splitting of boundary-value problems for the {Helmholtz} equation in a~strip with ``permeable'' boundaries},
     journal = {Izvestiya. Mathematics },
     pages = {877--898},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a9/}
}
TY  - JOUR
AU  - S. L. Edelstein
TI  - Asymptotic splitting of boundary-value problems for the Helmholtz equation in a~strip with ``permeable'' boundaries
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 877
EP  - 898
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a9/
LA  - en
ID  - IM2_1997_61_4_a9
ER  - 
%0 Journal Article
%A S. L. Edelstein
%T Asymptotic splitting of boundary-value problems for the Helmholtz equation in a~strip with ``permeable'' boundaries
%J Izvestiya. Mathematics 
%D 1997
%P 877-898
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a9/
%G en
%F IM2_1997_61_4_a9
S. L. Edelstein. Asymptotic splitting of boundary-value problems for the Helmholtz equation in a~strip with ``permeable'' boundaries. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 877-898. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a9/

[1] Edelshtein S. L., “Asimptoticheskoe rasscheplenie kraevykh zadach dlya differentsialnykh uravnenii v banakhovykh prostranstvakh”, Matem. zametki, 54:4 (1993), 140–148 | MR

[2] Edelshtein S. L., “Asimptoticheskoe rasscheplenie kraevykh zadach dlya abstraktnykh differentsialnykh uravnenii”, Differents. uravn., 30:5 (1994), 805–977 | MR

[3] Edelshtein S. L., “Asimptoticheskoe rasscheplenie kraevykh zadach dlya abstraktnykh differentsialnykh uravnenii”, Sib. matem. zhurn., 35:6 (1994), 1401–1420 | MR | Zbl

[4] Shtraus A. V., “O rasshireniyakh simmetricheskogo operatora, zavisyaschikh ot parametra”, Izv. AN SSSR. Ser. matem., 29:6 (1965), 1389–1416 | MR | Zbl

[5] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[6] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, T. 2, Izd-vo KhGU, Kharkov, 1978

[7] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[9] Isakovich M. A., Obschaya akustika, Nauka, M., 1973

[10] Edelshtein S. L., Apriornye otsenki polei v dvumernykh otkrytykh pochti stratifitsirovannykh volnovodakh. Metod parabolicheskogo uravneniya. Asimptotika, Dep. v VINITI 19.04.88, No 2957-v, Rostov-na-Donu, 1988, 51 pp.

[11] Edelshtein S. L., “Otsenki i asimptotika reshenii dvumernoi kraevoi zadachi dlya uravneniya Gelmgoltsa so slabo zavisyaschim ot odnoi peremennoi koeffitsientom”, Differents. uravn., 1990, no. 4, 727–729 | MR

[12] Tappert F. D., “Metod parabolicheskogo uravneniya”, Rasprostranenie voln i podvodnaya akustika, M., 1980, 180–226

[13] Mc. Daniel S. T., “Parabolic approximation in underwater sound propagation”, J. Acoust. Soc. Am., 58:6 (1975), 1178–1185 | DOI

[14] Baskakov V. A., Popov A. V., “Implimentation of transparent boundaries for numerical solution of the Schrödinger equation”, Wave Motion, 14 (1991), 123–128 | DOI | MR

[15] Marcus S. W., “A generalized impedance method for application of the parabolic approximation to underwater acoustics”, J. Acoust. Soc. Am., 90:1 (1991), 391–398 | DOI

[16] Edelshtein S. L., “Asimptotika mod plavno neregulyarnogo volnovoda s pronitsaemymi granitsami”, Akust. zhurn., 36:2 (1990), 355–359 | MR