Approximate symmetric variation and the Lusin $N$-property
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 831-841
Voir la notice de l'article provenant de la source Math-Net.Ru
An example is constructed of a continuous function having an approximate symmetric derivative everywhere, yet not having the Lusin $N$-property. The same example proves the existence of a continuous function whose approximate variation on some set of measure zero is non-zero, but whose approximate symmetric variation on the same set is zero.
@article{IM2_1997_61_4_a7,
author = {V. A. Skvortsov},
title = {Approximate symmetric variation and the {Lusin} $N$-property},
journal = {Izvestiya. Mathematics },
pages = {831--841},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/}
}
V. A. Skvortsov. Approximate symmetric variation and the Lusin $N$-property. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 831-841. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/