Approximate symmetric variation and the Lusin $N$-property
Izvestiya. Mathematics, Tome 61 (1997) no. 4, pp. 831-841
Cet article a éte moissonné depuis la source Math-Net.Ru
An example is constructed of a continuous function having an approximate symmetric derivative everywhere, yet not having the Lusin $N$-property. The same example proves the existence of a continuous function whose approximate variation on some set of measure zero is non-zero, but whose approximate symmetric variation on the same set is zero.
@article{IM2_1997_61_4_a7,
author = {V. A. Skvortsov},
title = {Approximate symmetric variation and the {Lusin} $N$-property},
journal = {Izvestiya. Mathematics},
pages = {831--841},
year = {1997},
volume = {61},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/}
}
V. A. Skvortsov. Approximate symmetric variation and the Lusin $N$-property. Izvestiya. Mathematics, Tome 61 (1997) no. 4, pp. 831-841. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/
[1] Saks S., Teoriya integrala, IL, M., 1949
[2] Ostaszewski K. M., “Henstock integration in the plane”, Amer. Math. Soc. Memoirs, 63:353 (1986) | MR
[3] Thomson B. S., “Derivates of Interval Functions”, Amer. Math. Soc. Memoirs, 93:452 (1991) | MR
[4] Thomson B. S., “Symmetric Properties of Real Functions”, Monographs and Textbooks in Pure and Appl. Math., 183, Marcel Dekker Inc., 1994 | MR | Zbl
[5] Henstock R., Theory of Integration, Butterworth, London, 1963 | MR | Zbl
[6] Khinchin A. Ya., “O protsesse integrirovaniya Danzhua”, Matem. sb., 30:4 (1918), 543–557 | Zbl
[7] Sklyarenko V. A., “Ob integriruemykh po Danzhua summakh vsyudu skhodyaschikhsya trigonometricheskikh ryadov”, DAN SSSR, 210:3 (1973), 533–536 | MR | Zbl