Approximate symmetric variation and the Lusin $N$-property
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 831-841.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example is constructed of a continuous function having an approximate symmetric derivative everywhere, yet not having the Lusin $N$-property. The same example proves the existence of a continuous function whose approximate variation on some set of measure zero is non-zero, but whose approximate symmetric variation on the same set is zero.
@article{IM2_1997_61_4_a7,
     author = {V. A. Skvortsov},
     title = {Approximate symmetric variation and the {Lusin} $N$-property},
     journal = {Izvestiya. Mathematics },
     pages = {831--841},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - Approximate symmetric variation and the Lusin $N$-property
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 831
EP  - 841
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/
LA  - en
ID  - IM2_1997_61_4_a7
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T Approximate symmetric variation and the Lusin $N$-property
%J Izvestiya. Mathematics 
%D 1997
%P 831-841
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/
%G en
%F IM2_1997_61_4_a7
V. A. Skvortsov. Approximate symmetric variation and the Lusin $N$-property. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 831-841. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a7/

[1] Saks S., Teoriya integrala, IL, M., 1949

[2] Ostaszewski K. M., “Henstock integration in the plane”, Amer. Math. Soc. Memoirs, 63:353 (1986) | MR

[3] Thomson B. S., “Derivates of Interval Functions”, Amer. Math. Soc. Memoirs, 93:452 (1991) | MR

[4] Thomson B. S., “Symmetric Properties of Real Functions”, Monographs and Textbooks in Pure and Appl. Math., 183, Marcel Dekker Inc., 1994 | MR | Zbl

[5] Henstock R., Theory of Integration, Butterworth, London, 1963 | MR | Zbl

[6] Khinchin A. Ya., “O protsesse integrirovaniya Danzhua”, Matem. sb., 30:4 (1918), 543–557 | Zbl

[7] Sklyarenko V. A., “Ob integriruemykh po Danzhua summakh vsyudu skhodyaschikhsya trigonometricheskikh ryadov”, DAN SSSR, 210:3 (1973), 533–536 | MR | Zbl