On the reconstructibility of frameworks from self-stresses
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 717-741.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak P$ be the set of all frameworks in $\mathbb R^d$ consisting of rods connected by universal hinges with a given junction scheme and with given point of fastening of some hinges. The problem is to find conditions for a framework $\mathbf p\in\mathfrak P$ to be reconstructible from the space $W(\mathbf p)$ of its self-stresses. In other words, under what conditions is $\mathbf p$ the unique framework in $\mathfrak P$ with the given space $W(\mathbf p)$ of self-stresses? A complete answer to this question is obtained only for frameworks in the line. We also investigate geometric properties of the image of the rigidity map which are related to the study of frameworks admitting self-stresses.
@article{IM2_1997_61_4_a2,
     author = {M. D. Kovalev},
     title = {On the reconstructibility of frameworks from self-stresses},
     journal = {Izvestiya. Mathematics },
     pages = {717--741},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a2/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - On the reconstructibility of frameworks from self-stresses
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 717
EP  - 741
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a2/
LA  - en
ID  - IM2_1997_61_4_a2
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T On the reconstructibility of frameworks from self-stresses
%J Izvestiya. Mathematics 
%D 1997
%P 717-741
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a2/
%G en
%F IM2_1997_61_4_a2
M. D. Kovalev. On the reconstructibility of frameworks from self-stresses. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 717-741. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a2/

[1] Kovalev M. D., “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN. Ser. matem., 58:1 (1994), 45–70 | Zbl

[2] Connelly R., “Rigidity and Energy”, Invent. Math., 66:1 (1982), 11–33 | DOI | MR | Zbl

[3] Uilson R., Vvedenie v teoriyu grafov, Mir, M., 1977 | MR

[4] Crapo H., Whiteley W., “Statics of Frameworks and Motions of Panel Structures, a Projective Geometric Introduction”, Structural Topology, 1982, no. 6, 43–82 | MR

[5] Postnikov M. M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[6] Connelly R., “The Rigidity of Certain Cabled Frameworks and the Second-Order Rigidity of Arbitrarily Triangulated Convex Surfaces”, Advances in Math., 37:3 (1980), 272–299 | DOI | MR | Zbl

[7] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Shtiintsa, Kishinev, 1978 | MR | Zbl