On $\operatorname{SL}_2$-actions of complexity one
Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 685-698.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the actions of the group $\operatorname{SL}_2$ with two-dimensional generic orbit on normal three-dimensional affine algebraic varieties. We obtain a complete classification of such actions whenever the stabilizer of general position is the subgroup of monomial matrices. We also prove some results for arbitrary actions of complexity one of reductive groups.
@article{IM2_1997_61_4_a0,
     author = {I. V. Arzhantsev},
     title = {On $\operatorname{SL}_2$-actions of complexity one},
     journal = {Izvestiya. Mathematics },
     pages = {685--698},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a0/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - On $\operatorname{SL}_2$-actions of complexity one
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 685
EP  - 698
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a0/
LA  - en
ID  - IM2_1997_61_4_a0
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T On $\operatorname{SL}_2$-actions of complexity one
%J Izvestiya. Mathematics 
%D 1997
%P 685-698
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a0/
%G en
%F IM2_1997_61_4_a0
I. V. Arzhantsev. On $\operatorname{SL}_2$-actions of complexity one. Izvestiya. Mathematics , Tome 61 (1997) no. 4, pp. 685-698. http://geodesic.mathdoc.fr/item/IM2_1997_61_4_a0/

[1] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $\operatorname {SL}(2)$”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 792–832 | MR | Zbl

[2] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[3] Popov V. L., “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130(172):3(7) (1986), 310–334 | MR | Zbl

[4] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Fund. napravleniya, 55, VINITI, M., 1989, 137–309 | MR

[5] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1988 | MR

[6] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[7] Vinberg E. B., Popov V. L., “Ob odnom klasse affinnykh kvaziodnorodnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 749–764 | MR | Zbl

[8] Vinberg E. B., “Slozhnost deistvii reduktivnykh grupp”, Funk. analiz i ego prilozh., 20:1 (1986), 1–13 | MR | Zbl

[9] Knop F., “Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind”, Math. Annalen, 295 (1993), 333–363 | DOI | MR | Zbl

[10] Panyushev D. I., “Good properties of algebras of invariants and defect of linear representations”, J. of Lie Theory, 5 (1995) | MR | Zbl

[11] Panyushev D. I., “Complexity and nilpotent orbit”, Manuscripta math., 1994, no. 83, 223–237 | DOI | MR | Zbl

[12] Panyushev D. I., “Complexity of Quasiaffine Homogeneous Varieties, $t$-Decompositions, and Affine Homogeneous Spaces of Complexity, 1”, Advances in Soviet Mathematics, 8 (1992), 151–166 | MR | Zbl

[13] Elkik R., “Singularites rationnelles et deformations”, Invent. math., 47 (1978), 139–147 | DOI | MR | Zbl

[14] Kempf G., Knudson F., Mumford D., Saint–Donat B., Toroidal embeddings, Lecture Notes in Math., 339, 1973 | MR | Zbl