Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 619-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of solutions of boundary value problems for the Lame system under various boundary conditions in the approximation of a smooth contour by polygonal ones. We explain which cases give rise to a paradox similar to that of Sapondzhyan and Babushka. We carry out a formal asymptotic analysis involving a construction of boundary layers near a rapidly oscillating boundary and asymptotic corrections near corner points.The constructed asymptotic behaviour is shown to be valid.
@article{IM2_1997_61_3_a5,
     author = {S. A. Nazarov and M. V. Olyushin},
     title = {Approximation of smooth contours by polygonal ones. {Paradoxes} in problems for the {Lame} system},
     journal = {Izvestiya. Mathematics },
     pages = {619--646},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - M. V. Olyushin
TI  - Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 619
EP  - 646
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/
LA  - en
ID  - IM2_1997_61_3_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A M. V. Olyushin
%T Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system
%J Izvestiya. Mathematics 
%D 1997
%P 619-646
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/
%G en
%F IM2_1997_61_3_a5
S. A. Nazarov; M. V. Olyushin. Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 619-646. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/

[1] Goldenveizer A. L., “Postroenie priblizhennoi teorii izgiba plastinki metodom asimptoticheskogo integrirovaniya uravnenii teorii uprugosti”, Prikladnaya matem. i mekhanika, 27:6 (1962), 1057–1074

[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, GITTL, M., 1957

[3] Sapondzhyan O. M., Izgib tonkikh uprugikh plit, Aiastan, Erevan, 1975

[4] Babushka I., “Ustoichivost oblasti opredeleniya po otnosheniyu k vozmuscheniyu granitsy osnovnykh zadach teorii differentsialnykh uravnenii v chastnykh proizvodnykh, glavnym obrazom v svyazi s teoriei uprugosti. 1; 2”, Chekhoslovatskii matem. zhurn., II:1 (1961), 76–105

[5] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[6] Ciarlet P. G., Plates junctions in elastic microstructures, MASSON, Paris–N.Y., 1980

[7] Sapondzhyan O. M., “Izgib svobodno opertoi poligonalnoi plity”, Izv. AN ArmSSR, 5:2 (1952), 29–46 | Zbl

[8] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh konturov mnogougolnymi”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1156–1177 | MR

[9] Rajaiah K., Rao A. K., “Effect of Boundary Conditions Description on Convergence of Solution in a Boundary-Value Problem”, J. of Computational Physics, 3:2 (1968), 190–201 | DOI | Zbl

[10] Hanuska A., “Zu den Theorien der Plattenbiegung”, Beton-und-Stahlbetonbau, 9 (1969), 214–217

[11] Rieder G., “Eingrenzungen in der Elastizitats- und Potential-theorie”, ZAMM, 52:10 (1972), 340–347 | MR

[12] Murray N. W., “The Polygone-Circle Paradox and Convergence in Thin Plate Theory”, Proceedings of the Cambridge Philosophical Society, 73, 1973, 279–283

[13] Rieder G., “On the Plate Paradox of Sapondzhyan and Babuska”, Mech. Res. Comm., 1 (1974), 51–53 | DOI

[14] Rajaiah K., Rao A. K., “On the Polygone-Circle Paradox”, J. of Applied Mechanics, 48 (1981), 195–196 | MR

[15] Babuska I., Pitkaranta J., “The plate paradox for hard and soft simple support”, SIAM J. Math. Anal., 21:3 (1990), 551–576 | DOI | MR | Zbl

[16] Reissner E., “On the bending of elastic plates”, Quart. Appl. Math., 5:1 (1947) | MR | Zbl

[17] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Fizmatgiz, M., 1963

[18] Shoikhet B. A., “Odno energeticheskoe tozhdestvo v fizicheski nelineinoi teorii uprugosti i otsenki pogreshnostei uravnenii plit”, Prikl. matem. i mekhanika, 40:2 (1976), 317–326 | MR

[19] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. matem. i mekhanika, 53:4 (1989), 642–650 | MR | Zbl

[20] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, North'Holland Publ. Co., Amsterdam, 1978 | MR

[21] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[22] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[23] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl

[24] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[25] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16 (1967), 209–298

[26] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[27] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[28] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981 | MR

[29] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii uravnenii vtorogo poryadka v oblasti s nekompaktnoi granitsei”, Matem. sb., 112:4 (1980), 588–610 | MR | Zbl

[30] Oleinik O. A., Yosifian G. A., “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Rat. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl

[31] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl

[32] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[33] Fridrichs K. O., “On the boundary value problems of the theorie of elasticity and Korn's inequality”, Ann. Math., 48 (1947), 447–471

[34] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[35] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, UMN, 43:5 (1988), 55–98 | MR

[36] Kondratev V. A., Oleinik O. A., “O zavisimosti konstant v neravenstve Korna ot parametra, kharakterizuyuschego geometriyu oblasti”, UMN, 44:6 (1989), 157–158 | MR | Zbl

[37] Kondratiev V. A., Oleinik O. A., “Hardy's and Korn's type inequalities and their applications”, Rendiconti di Matematica. Ser. VII. Roma, 10 (1990), 641–666 | MR | Zbl

[38] Ladyzhenskaya O. A., Kraevye zadachi v matematicheskoi fizike, Nauka, M., 1973 | MR

[39] Mazja W. G., Nazarov S. A., Plamenevski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singular gestorten Gebieten, Bd. 1, 2, Akademie-Verlag, Berlin, 1991