Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 619-646

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of solutions of boundary value problems for the Lame system under various boundary conditions in the approximation of a smooth contour by polygonal ones. We explain which cases give rise to a paradox similar to that of Sapondzhyan and Babushka. We carry out a formal asymptotic analysis involving a construction of boundary layers near a rapidly oscillating boundary and asymptotic corrections near corner points.The constructed asymptotic behaviour is shown to be valid.
@article{IM2_1997_61_3_a5,
     author = {S. A. Nazarov and M. V. Olyushin},
     title = {Approximation of smooth contours by polygonal ones. {Paradoxes} in problems for the {Lame} system},
     journal = {Izvestiya. Mathematics },
     pages = {619--646},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - M. V. Olyushin
TI  - Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 619
EP  - 646
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/
LA  - en
ID  - IM2_1997_61_3_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A M. V. Olyushin
%T Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system
%J Izvestiya. Mathematics 
%D 1997
%P 619-646
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/
%G en
%F IM2_1997_61_3_a5
S. A. Nazarov; M. V. Olyushin. Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 619-646. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a5/