Conditions for the range of a~difference operator to be closed
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 593-618

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study difference operators with variable differences that lie on a straight line in the space of holomorphic functions of a single variable. We obtain necessary and sufficient conditions for the range of such operators to be closed in terms of the zeros of their extreme coefficients. For a wide class of regions these conditions give simple criteria for the range of a difference operator to be closed.
@article{IM2_1997_61_3_a4,
     author = {S. G. Merzlyakov},
     title = {Conditions for the range of a~difference operator to be closed},
     journal = {Izvestiya. Mathematics },
     pages = {593--618},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a4/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Conditions for the range of a~difference operator to be closed
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 593
EP  - 618
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a4/
LA  - en
ID  - IM2_1997_61_3_a4
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Conditions for the range of a~difference operator to be closed
%J Izvestiya. Mathematics 
%D 1997
%P 593-618
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a4/
%G en
%F IM2_1997_61_3_a4
S. G. Merzlyakov. Conditions for the range of a~difference operator to be closed. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 593-618. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a4/