$p$-adic Brownian motion
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 537-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

$p$-adic analogue of Brownian motion is constructed and studied. The properties of the trajectories of a $p$-adic Wiener process are studied using Vladimirov's $p$-adic differentiation operator. To construct the $p$-adic Brownian motion we use a $p$-adic analogue of the Paley–Wiener method and a stochastic pseudodifferential equation.
@article{IM2_1997_61_3_a2,
     author = {A. Kh. Bikulov and I. V. Volovich},
     title = {$p$-adic {Brownian} motion},
     journal = {Izvestiya. Mathematics },
     pages = {537--552},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a2/}
}
TY  - JOUR
AU  - A. Kh. Bikulov
AU  - I. V. Volovich
TI  - $p$-adic Brownian motion
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 537
EP  - 552
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a2/
LA  - en
ID  - IM2_1997_61_3_a2
ER  - 
%0 Journal Article
%A A. Kh. Bikulov
%A I. V. Volovich
%T $p$-adic Brownian motion
%J Izvestiya. Mathematics 
%D 1997
%P 537-552
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a2/
%G en
%F IM2_1997_61_3_a2
A. Kh. Bikulov; I. V. Volovich. $p$-adic Brownian motion. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 537-552. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a2/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 1, Nauka, M., 1971 | MR

[3] Khrennikov A. Yu., “Obobschennye funktsii i gaussovskie kontinualnye integraly po nearkhimedovym funktsionalnym prostranstvam”, Izv. AN. Ser. matem., 55:4 (1991), 780–814 | MR

[4] Kochubei A. N., “Gaussovy integraly i spektrallnaya teoriya nad lokalnym polem”, Izv. AN. Ser. matem., 58:6 (1994), 69–78 | MR

[5] Evans S. N., “Continuity properties of gaussian stochastic processes indexed by a local field”, Proc. Math. Soc., 56:2 (1988), 380–416 | DOI | MR | Zbl

[6] Evans S. N., “Sample path properties of gaussian stochastic processes indexed by a local field”, Proc. Math. Soc., 56:3 (1988), 580–624 | DOI | MR | Zbl

[7] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[8] Shilov G. E., Fan Dyk Tin., Integral, mera i proizvodnaya na lineinykh prostranstvakh, Nauka, M., 1967

[9] Smolyanov O. G., “Ob izmerimosti i neizmerimosti podmnozhestv nekotorykh funktsionalnykh prostranstv s meroi”, Vestn. MGU. Seriya 1, 1966, no. 4, 72–85 | Zbl

[10] Khida T., Brounovskoe dvizhenie, Nauka, M., 1987 | MR | Zbl

[11] Albeverio S., Karwowski W., “A random walk on $p$-adics: the generator and its spectrum”, Stoch. Proc. Appl., 53 (1994), 1–22 | DOI | MR | Zbl

[12] Bikulov A. Kh., “Issledovanie $p$-adicheskoi funktsii Grina”, TMF, 87:3 (1991), 376–390 | MR | Zbl