Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1997_61_3_a1, author = {I. K. Babenko}, title = {Topological entropy of geodesic flows on simply connected manifolds, and related topics}, journal = {Izvestiya. Mathematics }, pages = {517--535}, publisher = {mathdoc}, volume = {61}, number = {3}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a1/} }
I. K. Babenko. Topological entropy of geodesic flows on simply connected manifolds, and related topics. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 517-535. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a1/
[1] Dinaburg E. I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 35:2 (1971), 324–366 | MR | Zbl
[2] Manning A., “Topological entropy for geodesic flows”, Annals of Math., 110:3 (1979), 567–573 | DOI | MR | Zbl
[3] Adler R. A., Konheim A., McAndrew M., “Topological entropy”, Trans. Amer. Math. Soc., 114 (1965), 309–319 | DOI | MR | Zbl
[4] Shvarts A. S., “Ob'emnyi invariant nakryvayuschikh”, DAN SSSR, 105:1 (1955), 32–34 | MR | Zbl
[5] Adams J. F., “On the cobar construction”, Proc. NAS USA, 42 (1956), 409–412 | DOI | MR | Zbl
[6] Neisendorfer J., Miller T., “Formal and coformal spaces”, Illinois J. of Math., 22:4 (1978), 565–580 | MR
[7] Félix Y., Halperin S., Thomas J.-C., “The homotopy Lie algebra for finite complexes”, Publ. IHES, 1982, no. 56, 387–410 | MR
[8] Halperin S., “Finiteness in the minimal models of Sullivan”, Trans. AMS, 230 (1977), 173–190 | DOI | MR
[9] Halperin S., “Spaces whose rational homology and de Rham homotopy are both finite dimensional”, Asterisque, 1984, no. 113–114, 109–117 | MR | Zbl
[10] Halperin S., “Torsion gaps in the homotopy of finite complexes, II”, Topology, 30:3 (1991), 471–478 | DOI | MR | Zbl
[11] Félix Y., Thomas J.-C., “The radius of convergence of Poincaré series of loop spaces”, Invent. Math., 68 (1982), 257–274 | DOI | MR | Zbl
[12] Babenko I. K., “O veschestvennykh gomotopicheskikh svoistvakh polnykh peresechenii”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1004–1024 | MR | Zbl
[13] Babenko I. K., “Ob analiticheskikh svoistvakh ryadov Puankare prostranstva petel”, Matem. zametki, 27:5 (1980), 751–765 | MR | Zbl
[14] Paternain G., “On the topology of manifolds with completely integrable geodesic flows”, Ergod. Th. and Dyn. Syst., 12:3 (1992), 109–121 | MR
[15] Grove H., Halperin S., “Contributions of rational homotopy theory to global problems of Geometry”, Publ. IHES, 1982, no. 56, 379–385 | MR
[16] Taimanov I. A., “Topologiya rimanovykh mnogoobrazii s integriruemymi geodezicheskimi potokami”, Tr. MI RAN, 205, 1994, 150–163 | MR | Zbl
[17] Hernandez-Andrade H., “A class of compact manifolds with positive Ricci curvature”, Proc. Symp. Pure Math. AMS, XXVII (1975), 73–87 | MR
[18] Sha Ji. P., Yang Da-g, “Positive Ricci curvature on the connected sums of $S^n\times S^m$”, J. Diff. Geom., 33:1 (1991), 127–137 | MR | Zbl
[19] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[20] Gromov M., “Filing riemannian manifolds”, J. Diff. Geom., 18:1 (1983), 1–147 | MR | Zbl
[21] Croke C. B., “Area and the length of the shortest closed geodesic”, J. Diff. Geom., 27:1 (1988), 1–21 | MR | Zbl
[22] Babenko I. K., “Asimptoticheskie invarianty gladkikh mnogoobrazii”, Izv. RAN. Ser. matem., 56:4 (1992), 707–751 | Zbl
[23] Babenko I. K., “Ekstremalnye problemy geometrii, perestroiki mnogoobrazii i zadachi teorii grupp”, Izv. RAN. Ser. matem., 59:2 (1995), 97–108 | MR | Zbl
[24] Katok A., “Entropy and closed geodesics”, Ergod Th. and Dyn. Syst., 1982, no. 2, 339–367 | MR
[25] Besson J., Gallot S., Courtois J., Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Prépublication de l'Institut Fourier, No 281, Grenoble, 1994
[26] Gromov M., “Structures métriques pour les variétés riemanniennes”, La collection “Textes Mathématiques” des Editions CEDIC, Paris, 1981 | MR | Zbl
[27] Federer H., “Real flat chains, cochains and variational problems”, Indiana Univ. Math. J., 24 (1974), 351–407 | DOI | MR | Zbl