Topological entropy of geodesic flows on simply connected manifolds, and related topics
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 517-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower estimates are obtained for the topological entropy of geodesic flows on simply connected manifolds. The estimates involve two constants; one depends on the homotopy type of the manifold only, and the other, introduced in this paper, on the properties of the metric in question. Some related topics are studied.
@article{IM2_1997_61_3_a1,
     author = {I. K. Babenko},
     title = {Topological entropy of geodesic flows on simply connected manifolds, and related topics},
     journal = {Izvestiya. Mathematics },
     pages = {517--535},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a1/}
}
TY  - JOUR
AU  - I. K. Babenko
TI  - Topological entropy of geodesic flows on simply connected manifolds, and related topics
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 517
EP  - 535
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a1/
LA  - en
ID  - IM2_1997_61_3_a1
ER  - 
%0 Journal Article
%A I. K. Babenko
%T Topological entropy of geodesic flows on simply connected manifolds, and related topics
%J Izvestiya. Mathematics 
%D 1997
%P 517-535
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a1/
%G en
%F IM2_1997_61_3_a1
I. K. Babenko. Topological entropy of geodesic flows on simply connected manifolds, and related topics. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 517-535. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a1/

[1] Dinaburg E. I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 35:2 (1971), 324–366 | MR | Zbl

[2] Manning A., “Topological entropy for geodesic flows”, Annals of Math., 110:3 (1979), 567–573 | DOI | MR | Zbl

[3] Adler R. A., Konheim A., McAndrew M., “Topological entropy”, Trans. Amer. Math. Soc., 114 (1965), 309–319 | DOI | MR | Zbl

[4] Shvarts A. S., “Ob'emnyi invariant nakryvayuschikh”, DAN SSSR, 105:1 (1955), 32–34 | MR | Zbl

[5] Adams J. F., “On the cobar construction”, Proc. NAS USA, 42 (1956), 409–412 | DOI | MR | Zbl

[6] Neisendorfer J., Miller T., “Formal and coformal spaces”, Illinois J. of Math., 22:4 (1978), 565–580 | MR

[7] Félix Y., Halperin S., Thomas J.-C., “The homotopy Lie algebra for finite complexes”, Publ. IHES, 1982, no. 56, 387–410 | MR

[8] Halperin S., “Finiteness in the minimal models of Sullivan”, Trans. AMS, 230 (1977), 173–190 | DOI | MR

[9] Halperin S., “Spaces whose rational homology and de Rham homotopy are both finite dimensional”, Asterisque, 1984, no. 113–114, 109–117 | MR | Zbl

[10] Halperin S., “Torsion gaps in the homotopy of finite complexes, II”, Topology, 30:3 (1991), 471–478 | DOI | MR | Zbl

[11] Félix Y., Thomas J.-C., “The radius of convergence of Poincaré series of loop spaces”, Invent. Math., 68 (1982), 257–274 | DOI | MR | Zbl

[12] Babenko I. K., “O veschestvennykh gomotopicheskikh svoistvakh polnykh peresechenii”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1004–1024 | MR | Zbl

[13] Babenko I. K., “Ob analiticheskikh svoistvakh ryadov Puankare prostranstva petel”, Matem. zametki, 27:5 (1980), 751–765 | MR | Zbl

[14] Paternain G., “On the topology of manifolds with completely integrable geodesic flows”, Ergod. Th. and Dyn. Syst., 12:3 (1992), 109–121 | MR

[15] Grove H., Halperin S., “Contributions of rational homotopy theory to global problems of Geometry”, Publ. IHES, 1982, no. 56, 379–385 | MR

[16] Taimanov I. A., “Topologiya rimanovykh mnogoobrazii s integriruemymi geodezicheskimi potokami”, Tr. MI RAN, 205, 1994, 150–163 | MR | Zbl

[17] Hernandez-Andrade H., “A class of compact manifolds with positive Ricci curvature”, Proc. Symp. Pure Math. AMS, XXVII (1975), 73–87 | MR

[18] Sha Ji. P., Yang Da-g, “Positive Ricci curvature on the connected sums of $S^n\times S^m$”, J. Diff. Geom., 33:1 (1991), 127–137 | MR | Zbl

[19] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[20] Gromov M., “Filing riemannian manifolds”, J. Diff. Geom., 18:1 (1983), 1–147 | MR | Zbl

[21] Croke C. B., “Area and the length of the shortest closed geodesic”, J. Diff. Geom., 27:1 (1988), 1–21 | MR | Zbl

[22] Babenko I. K., “Asimptoticheskie invarianty gladkikh mnogoobrazii”, Izv. RAN. Ser. matem., 56:4 (1992), 707–751 | Zbl

[23] Babenko I. K., “Ekstremalnye problemy geometrii, perestroiki mnogoobrazii i zadachi teorii grupp”, Izv. RAN. Ser. matem., 59:2 (1995), 97–108 | MR | Zbl

[24] Katok A., “Entropy and closed geodesics”, Ergod Th. and Dyn. Syst., 1982, no. 2, 339–367 | MR

[25] Besson J., Gallot S., Courtois J., Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Prépublication de l'Institut Fourier, No 281, Grenoble, 1994

[26] Gromov M., “Structures métriques pour les variétés riemanniennes”, La collection “Textes Mathématiques” des Editions CEDIC, Paris, 1981 | MR | Zbl

[27] Federer H., “Real flat chains, cochains and variational problems”, Indiana Univ. Math. J., 24 (1974), 351–407 | DOI | MR | Zbl