Explicit formulae for the Hilbert symbol of a~formal group over the Witt vectors
Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 463-515.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an explicit formula is obtained for a generalisation of the Hilbert symbol, associated with an arbitrary formal group of finite height, defined over the ring of Witt vectors with coefficients in a perfect field of characteristic $p>0$. This formula becomes the Bruckner–Vostokov formula in the case of a multiplicative formal group. The proof is based on an application of Fontaine's theory of $p$-adic periods of formal groups, the Fontaine–Wintenberg field-of-norms functor, and Witt's explicit reciprocity law in characteristic $p$.
@article{IM2_1997_61_3_a0,
     author = {V. A. Abrashkin},
     title = {Explicit formulae for the {Hilbert} symbol of a~formal group over the {Witt} vectors},
     journal = {Izvestiya. Mathematics },
     pages = {463--515},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a0/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - Explicit formulae for the Hilbert symbol of a~formal group over the Witt vectors
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 463
EP  - 515
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a0/
LA  - en
ID  - IM2_1997_61_3_a0
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T Explicit formulae for the Hilbert symbol of a~formal group over the Witt vectors
%J Izvestiya. Mathematics 
%D 1997
%P 463-515
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a0/
%G en
%F IM2_1997_61_3_a0
V. A. Abrashkin. Explicit formulae for the Hilbert symbol of a~formal group over the Witt vectors. Izvestiya. Mathematics , Tome 61 (1997) no. 3, pp. 463-515. http://geodesic.mathdoc.fr/item/IM2_1997_61_3_a0/

[1] Abrashkin V. A., “Ramification in etale cohomology”, Invent. Math., 101 (1990), 631–640 | DOI | MR | Zbl

[2] Abrashkin V. A., “Filtratsiya vetvleniya gruppy Galua lokalnogo polya, II”, Tr. MIRAN, 208 (1995), 18–69 | MR | Zbl

[3] Abrashkin V. A., A remark about Brückner–Vostokov explicit reciprocity law, Preprint MPI/94-61, Bonn

[4] Artin E., Hasse H., “Die beiden Ergänzungssätze zum Reziprozitätsgesetz der $l^n$-ten Einheitzwurzeln”, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 46–162 | DOI

[5] Benois D., Periodes $p$-adiques et lois de reciprocite explicites, Preprint Universite Bordeux, 1995 | MR

[6] Benua D. G., Vostokov S. V., “Normennoe sparivanie v formalnykh gruppakh i predstavleniya Galua”, Algebra i analiz, 2:6 (1990), 69–97 | MR

[7] Berthelot P., Messing W., “Theorie de Deudonne Cristalline. III: Theoremes d'Equivalence et de Pleine Fidelite”, The Grotendieck Festschrift. A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, V. 1, 1990, 173–247 | MR | Zbl

[8] Brückner H., “Eine explizite Formel zum Reziprozitätsgesetz für Primzahlexponenten $p$”, Hasse H., Roquette P., Algebraische Zahlentheorie, Bericht einer Tagung des Math. Inst. Obervolfach (1964), Bibliographisches Institut. Manheim, 1966 | MR | Zbl

[9] Colmez P., “Periodes $p$-adiques des varietes abeliennes”, Math. Ann., 292 (1992), 629–644 | DOI | MR | Zbl

[10] Decauwert J.-M., “Classification des $A$-modules formels”, C. R. Acad. Sci. Paris. Serie A, 283 (1976), 1413–1416 | MR

[11] Fontaine J.-M., “Groupes $p$-divisibles sur les corps locaux”, Asterisque, 47–48 (1977) | MR | Zbl

[12] Fontaine J.-M., “Modules galoisiens, modules filtres et anneaux de Barsotti-Tate”, Asterisque, 65 (1979), 3–80 | MR | Zbl

[13] Fontaine J.-M., “Sur certains types de representations $p$-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate”, Ann. Math., 115 (1982), 529–577 | DOI | MR | Zbl

[14] Fontaine J.-M., “Representations $p$-adiques des corps locaux, I”, The Grothendieck Festschrift. A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, V. 2, 1990, 249–309 | MR | Zbl

[15] Fontaine J.-M., Laffaille G., “Construction de representations $p$-adiques”, Ann. Sci. E.N.S. 4 serie, 15 (1982), 547–608 | MR | Zbl

[16] Hazewinkel M., Formal groups and applications, Academic Press, New York, 1978 | MR | Zbl

[17] Kato K., “The explicit reciprocity law and cohomology of Fontaine–Messing”, Bull. Soc. Math. France, 119 (1991), 397–441 | MR | Zbl

[18] Kolyvagin V. A., “Formalnye gruppy i vychet normennogo simvola”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1054–1120 | MR | Zbl

[19] Laubie F., “Extensions de Lie et groupes d'automorphismes de corps locaux”, Compos. Math., 67 (1988), 165–189 | MR | Zbl

[20] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matem. sb., 26(68) (1950), 113–146 | MR | Zbl

[21] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[22] Vostokov S. V., “Normennoe sparivanie v formalnykh modulyakh”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 765–794 | MR | Zbl

[23] Wintenberger J.-P., “Le corps des normes de certaines extensions infinies des corps locaux; application”, Ann. Sci. Ec. Norm. Super. Ser. IV, 16 (1983), 59–89 | MR | Zbl