On functions with bounded $\mathbf n$th differences
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 331-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modified Whitney constants for approximation by cubic polynomials are calculated exactly. New estimates are obtained of Whitney constants for approximating $C(I^N)$-functions by quasi-polynomials.
@article{IM2_1997_61_2_a4,
     author = {Yu. V. Kryakin},
     title = {On functions with bounded $\mathbf n$th differences},
     journal = {Izvestiya. Mathematics },
     pages = {331--346},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Kryakin
TI  - On functions with bounded $\mathbf n$th differences
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 331
EP  - 346
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/
LA  - en
ID  - IM2_1997_61_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Kryakin
%T On functions with bounded $\mathbf n$th differences
%J Izvestiya. Mathematics 
%D 1997
%P 331-346
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/
%G en
%F IM2_1997_61_2_a4
Yu. V. Kryakin. On functions with bounded $\mathbf n$th differences. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 331-346. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/

[1] Whitney H., “On function with bounded $n$-th differences”, J. Mat. Pure et Appl., 36 (1955), 67–95 | MR

[2] Sendov B., “On the constants of H. Whitney”, C. R. Acad. Bul. Sci., 35 (1982), 424–431 | MR

[3] Brudnyi Yu. A., “Ob odnoi teoreme lokalnykh nailuchshikh priblizhenii”, Uch. zap. Kazanskogo un-ta, 124:6 (1964), 43–49 | MR

[4] Ivanov K., Takev M., “$O\bigl (n\ln (n)\bigr )$ bounds of constants of H. Whitney”, C. R. Acad. Bul. Sci., 38:10 (1985), 1129–1131 | MR | Zbl

[5] Binev P., “$ O(n)$ bounds of Whitney constants”, C. R. Acad. Bul. Sci., 38:10 (1985), 1315–1317 | MR

[6] Sendov B., “The constants of H.Whitney are bounded”, C. R. Acad. Bul. Sci., 38:10 (1985), 1299–1303 | MR

[7] Sendov B., “On the theorem and constants of H. Whitney”, Constr. Approx., 3 (1987), 1–11 | DOI | MR | Zbl

[8] Sendov B., Popov V., The average moduli of smoothness, Wiley Sons, 1988 | MR

[9] Brudnyi Yu. A., “Konstanty Uitni”, Sovremennye problemy teorii funktsii, Tez. dokladov, Baku, 1989 | Zbl

[10] Kryakin Yu. V., “O konstantakh Uitni”, Matem. zametki, 46:2 (1989), 155–157 | MR | Zbl

[11] Kryakin Yu. V., “O teoreme i konstantakh Uitni”, Matem. sb., 185:3 (1994), 25–40 | Zbl

[12] Storozhenko E. A., “Priblizhenie funktsii interpolyatsionnymi v srednem splainami”, Izv. vuzov. Matematika, 1976, no. 12, 82–95

[13] Kryakin Yu. V., “On the theorem of H. Whitney in Spases $L_p$”, Math. Balk., 4:3 (1990), 258–271 | MR | Zbl

[14] Kryakin Yu. V., Kovalenko L. G., “O teoreme Uitni v $L_p$”, Izv. vuzov. Matematika, 1992, no. 1, 69–77 | MR | Zbl

[15] Sendov B., Takev M., “The theorem of Whitney for integral norm”, C. R. Acad. Bul. Sci., 38:10 (1985), 1199–1302 | MR

[16] Kryakin Yu. V., Takev M. D., “Ob interpolyatsionnykh konstantakh Uitni”, Matem. zametki, 1995

[17] Kryakin Yu. V., “O tochnykh konstantakh v teoreme Uitni”, Matem. zametki, 54:1 (1993), 34–51 | MR | Zbl

[18] Brudnyi Yu. A., “Mnogomernyi analog odnoi teoremy Uitni”, Matem. sb., 82:2 (1970), 175–191 | MR | Zbl

[19] Brudnyi Yu. A., “Priblizhenie funktsii $n$ peremennykh kvazimnogochlenami”, Izv. AN SSSR. Ser. matem., 34:3 (1970), 564–583

[20] Storozhenko E. A., “Priblizhenie algebraicheskimi mnogochlenami funktsii klassa $L^p$, $0

1$”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 652–662 | MR | Zbl

[21] Storozhenko E. A., Osvald P., “Teorema Dzheksona v prostranstvakh $L^p(\mathbb R^k)$, ${0

1}$”, Sib. matem. zhurnal, 19:4 (1976), 888–901

[22] Popov V., Petrushev P., “Rational Approximation of Real Functions”, Encyclopedia of Mathematics and its Applications, 28, Cambridge University Press, 1988 | MR

[23] Kryakin Yu. V., Storozhenko E. A., “O teoreme Uitni v $L_p$-metrike, $0

\infty$”, Matem. sb., 186:3 (1995), 131–142 | MR | Zbl

[24] Sendov B., Takev M., “A Theorem of Whitney's type in $\mathrm {R}^2$”, PLISKA Studia mathematica bulgarica, 11 (1991), 78–85 | MR | Zbl

[25] Takev M., “A theorem of Whitney type in $\mathbb R^n$”, Constructive theory of functions (1987), 1988, 441–447 | MR | Zbl