On functions with bounded $\mathbf n$th differences
Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 331-346

Voir la notice de l'article provenant de la source Math-Net.Ru

Modified Whitney constants for approximation by cubic polynomials are calculated exactly. New estimates are obtained of Whitney constants for approximating $C(I^N)$-functions by quasi-polynomials.
@article{IM2_1997_61_2_a4,
     author = {Yu. V. Kryakin},
     title = {On functions with bounded $\mathbf n$th differences},
     journal = {Izvestiya. Mathematics },
     pages = {331--346},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Kryakin
TI  - On functions with bounded $\mathbf n$th differences
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 331
EP  - 346
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/
LA  - en
ID  - IM2_1997_61_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Kryakin
%T On functions with bounded $\mathbf n$th differences
%J Izvestiya. Mathematics 
%D 1997
%P 331-346
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/
%G en
%F IM2_1997_61_2_a4
Yu. V. Kryakin. On functions with bounded $\mathbf n$th differences. Izvestiya. Mathematics , Tome 61 (1997) no. 2, pp. 331-346. http://geodesic.mathdoc.fr/item/IM2_1997_61_2_a4/