Dialogue interpretation of the classical predicate calculus
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 225-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

An intuitionistic dialogue interpretation is constructed for the classical predicate calculus, and a completeness theorem (an intuitionistic analogue of the Godel theorem) is proved for the interpretation.
@article{IM2_1997_61_1_a9,
     author = {V. A. Yankov},
     title = {Dialogue interpretation of the classical predicate calculus},
     journal = {Izvestiya. Mathematics },
     pages = {225--233},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a9/}
}
TY  - JOUR
AU  - V. A. Yankov
TI  - Dialogue interpretation of the classical predicate calculus
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 225
EP  - 233
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a9/
LA  - en
ID  - IM2_1997_61_1_a9
ER  - 
%0 Journal Article
%A V. A. Yankov
%T Dialogue interpretation of the classical predicate calculus
%J Izvestiya. Mathematics 
%D 1997
%P 225-233
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a9/
%G en
%F IM2_1997_61_1_a9
V. A. Yankov. Dialogue interpretation of the classical predicate calculus. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 225-233. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a9/

[1] Yankov V. A., “Dialogovaya teoriya dokazatelstva”, Izv. RAN. Ser. matem., 58:3 (1994), 140–178 | MR

[2] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972, S. 343–345 | MR

[3] Spector C., “Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics”, Proceedings of the Symposia in Pure Mathematics, 5, ed. J. C. E. Dekher, Amer. Math. Soc., 1962, 1–27 | MR