Smoothing of functions in finite-dimensional Banach spaces
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 207-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the linear smoothing of continuous functions defined on the unit ball in $\mathbb R^n$, and look for lower bounds for the norms of the derivatives of the approximating functions on the unit balls in arbitrary finite-dimensional spaces.
@article{IM2_1997_61_1_a8,
     author = {I. G. Tsar'kov},
     title = {Smoothing of functions in finite-dimensional {Banach} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {207--223},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a8/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Smoothing of functions in finite-dimensional Banach spaces
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 207
EP  - 223
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a8/
LA  - en
ID  - IM2_1997_61_1_a8
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Smoothing of functions in finite-dimensional Banach spaces
%J Izvestiya. Mathematics 
%D 1997
%P 207-223
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a8/
%G en
%F IM2_1997_61_1_a8
I. G. Tsar'kov. Smoothing of functions in finite-dimensional Banach spaces. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 207-223. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a8/

[1] Tsarkov I. G., “Poperechniki i neravenstvo tipa Dzheksona dlya abstraktnykh funktsii”, Tr. MIRAN, 198 (1992), 219–231 | MR | Zbl

[2] Figiel T., Lindenstrauss J., Milman V. D., “The dimension of almost spherical section of convex bodies”, Acta Math., 139:1–2 (1977), 53–94 | DOI | MR | Zbl

[3] Czipszer J., Geher L., “Extension of functions satisfying a Lipschitz condition”, Acta Math. Acad. Sc. Hung., 6:1–2 (1955), 213–222 | DOI | MR

[4] Tsarkov I. G., “Lineinye metody v nekotorykh zadachakh sglazhivaniya”, Matem. zametki, 56:6 (1994), 64–87 | MR | Zbl