Smoothing of functions in finite-dimensional Banach spaces
Izvestiya. Mathematics, Tome 61 (1997) no. 1, pp. 207-223
We consider the problem of the linear smoothing of continuous functions defined on the unit ball in $\mathbb R^n$, and look for lower bounds for the norms of the derivatives of the approximating functions on the unit balls in arbitrary finite-dimensional spaces.
@article{IM2_1997_61_1_a8,
author = {I. G. Tsar'kov},
title = {Smoothing of functions in finite-dimensional {Banach} spaces},
journal = {Izvestiya. Mathematics},
pages = {207--223},
year = {1997},
volume = {61},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a8/}
}
I. G. Tsar'kov. Smoothing of functions in finite-dimensional Banach spaces. Izvestiya. Mathematics, Tome 61 (1997) no. 1, pp. 207-223. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a8/
[1] Tsarkov I. G., “Poperechniki i neravenstvo tipa Dzheksona dlya abstraktnykh funktsii”, Tr. MIRAN, 198 (1992), 219–231 | MR | Zbl
[2] Figiel T., Lindenstrauss J., Milman V. D., “The dimension of almost spherical section of convex bodies”, Acta Math., 139:1–2 (1977), 53–94 | DOI | MR | Zbl
[3] Czipszer J., Geher L., “Extension of functions satisfying a Lipschitz condition”, Acta Math. Acad. Sc. Hung., 6:1–2 (1955), 213–222 | DOI | MR
[4] Tsarkov I. G., “Lineinye metody v nekotorykh zadachakh sglazhivaniya”, Matem. zametki, 56:6 (1994), 64–87 | MR | Zbl