Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 113-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved about the asymptotic behaviour of solutions of an initial boundary-value problem for non-stationary Stokes equations in a periodic perforated domain with a small period $\varepsilon$. The viscosity coefficient $\nu$ of the equations is assumed to be a positive parameter satisfying one of the following three conditions: $\nu/\varepsilon^2 \to \infty,1,0$ as $\varepsilon\to 0$. We also consider the case of degenerate Stokes equations with zero viscosity coefficient and the case of Navier–Stokes equations when the viscosity coefficient is not too small.
@article{IM2_1997_61_1_a4,
     author = {G. V. Sandrakov},
     title = {Homogenization of non-stationary {Stokes} equations with viscosity in a~perforated domain},
     journal = {Izvestiya. Mathematics },
     pages = {113--141},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 113
EP  - 141
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/
LA  - en
ID  - IM2_1997_61_1_a4
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
%J Izvestiya. Mathematics 
%D 1997
%P 113-141
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/
%G en
%F IM2_1997_61_1_a4
G. V. Sandrakov. Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 113-141. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/

[1] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[2] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[3] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] Allaire G., “Homogenization of the Stokes flow in a connected porous medium”, Asymptotic Anal., 2 (1989), 203–222 | MR | Zbl

[5] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[6] Zhikov V. V., “Ob usrednenii sistemy uravnenii Stoksa v perforirovannoi oblasti”, DAN SSSR, 334:2 (1994), 144–147 | MR | Zbl

[7] Mikelić A., “Homogenization of nonstationary Navier–Stokes equations in a domain with grained boundary”, Annali di Matematica pure ed applicata, CLVIII (1991), 167–179 | DOI | MR

[8] Mikelić A., “Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous media”, Glasnik Mat., 29 (1994), 57–77 | MR | Zbl

[9] Allaire G., “Homogenization of the unsteady Stokes equations in porous medium”, Progress in partial differential equations: calculus of variations, applications, Longman Scientific and Technical, London, 1992

[10] Sandrakov G. V., Osrednenie linearizovannoi sistemy gidrodinamiki s maloi vyazkostyu i skorost zvuka v smesyakh, Preprint No 178, OVM AN SSSR, M., 1987 | MR

[11] Sandrakov G. V., “Osrednenie nestatsionarnogo potoka Stoksa v periodicheskoi perforirovannoi srede”, DAN, 347:3 (1996), 312–315 | MR | Zbl

[12] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[13] Valedinskii V. D., Kobelkov G. M., O raznostnom analoge neravenstva $\|p\|_{L^2}\leq C\|\operatorname {grad}p\|_{W^{-1}_2}$, Preprint No 67, OVM AN SSSR, M., 1983

[14] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, 1, Mir, M., 1977 | MR

[15] Bogovskii M. E., “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, DAN SSSR, 248:5 (1979), 1037–1040 | MR | Zbl

[16] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[17] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[18] MacCamy R. C., Wong J. S. W., “Stability theorems for some functional equations”, Trans. AMS, 164 (1972), 1–37 | DOI | MR | Zbl

[19] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[20] Edvards R., Ryady Fure v sovremennom izlozhenii, t. 1, Mir, M., 1985

[21] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. shkola, M., 1982 | MR | Zbl

[22] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1986 | Zbl