Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 113-141

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved about the asymptotic behaviour of solutions of an initial boundary-value problem for non-stationary Stokes equations in a periodic perforated domain with a small period $\varepsilon$. The viscosity coefficient $\nu$ of the equations is assumed to be a positive parameter satisfying one of the following three conditions: $\nu/\varepsilon^2 \to \infty,1,0$ as $\varepsilon\to 0$. We also consider the case of degenerate Stokes equations with zero viscosity coefficient and the case of Navier–Stokes equations when the viscosity coefficient is not too small.
@article{IM2_1997_61_1_a4,
     author = {G. V. Sandrakov},
     title = {Homogenization of non-stationary {Stokes} equations with viscosity in a~perforated domain},
     journal = {Izvestiya. Mathematics },
     pages = {113--141},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 113
EP  - 141
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/
LA  - en
ID  - IM2_1997_61_1_a4
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
%J Izvestiya. Mathematics 
%D 1997
%P 113-141
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/
%G en
%F IM2_1997_61_1_a4
G. V. Sandrakov. Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 113-141. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a4/