Exact bounds for the minimum norm of extension operators for Sobolev spaces
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 1-43

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with extension operators for the Sobolev spaces $W_p^l(\Omega)$, where $\Omega$ is a domain in $\mathbb R^n$ with boundary in a Lipschitz class. Two-sided bounds are obtained for the minimum norm of an extension operator that are exact with respect to the smoothness parameter $l$.
@article{IM2_1997_61_1_a0,
     author = {V. I. Burenkov and A. L. Gorbunov},
     title = {Exact bounds for the minimum norm of extension operators for {Sobolev} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1--43},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - A. L. Gorbunov
TI  - Exact bounds for the minimum norm of extension operators for Sobolev spaces
JO  - Izvestiya. Mathematics 
PY  - 1997
SP  - 1
EP  - 43
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/
LA  - en
ID  - IM2_1997_61_1_a0
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A A. L. Gorbunov
%T Exact bounds for the minimum norm of extension operators for Sobolev spaces
%J Izvestiya. Mathematics 
%D 1997
%P 1-43
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/
%G en
%F IM2_1997_61_1_a0
V. I. Burenkov; A. L. Gorbunov. Exact bounds for the minimum norm of extension operators for Sobolev spaces. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 1-43. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/