Exact bounds for the minimum norm of extension operators for Sobolev spaces
Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 1-43
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is concerned with extension operators for the Sobolev spaces $W_p^l(\Omega)$, where $\Omega$ is a domain in $\mathbb R^n$ with boundary in a Lipschitz class. Two-sided bounds are obtained for the minimum norm of an extension operator that are exact with respect to the smoothness parameter $l$.
@article{IM2_1997_61_1_a0,
author = {V. I. Burenkov and A. L. Gorbunov},
title = {Exact bounds for the minimum norm of extension operators for {Sobolev} spaces},
journal = {Izvestiya. Mathematics },
pages = {1--43},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/}
}
TY - JOUR AU - V. I. Burenkov AU - A. L. Gorbunov TI - Exact bounds for the minimum norm of extension operators for Sobolev spaces JO - Izvestiya. Mathematics PY - 1997 SP - 1 EP - 43 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/ LA - en ID - IM2_1997_61_1_a0 ER -
V. I. Burenkov; A. L. Gorbunov. Exact bounds for the minimum norm of extension operators for Sobolev spaces. Izvestiya. Mathematics , Tome 61 (1997) no. 1, pp. 1-43. http://geodesic.mathdoc.fr/item/IM2_1997_61_1_a0/