The Rayleigh hydrodynamical problem: a~theorem on eigenfunction expansion and the stability of plane-parallel flows
Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1293-1316.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Rayleigh problem on the stability of plane-parallel flow of an ideal fluid leads to a singular and non-self-adjoint boundary-value problem that admits an operator formulation within the framework of the Friedrichs model. Using the technique of the stationary theory of scattering and the method of contour integration of the resolvent, a spectral analysis of the problem is carried out. The finiteness of the set of eigenvalues is proved, analytic properties of the Green's function are investigated, and the expansion in eigenfunctions corresponding to the continuous and point spectra is obtained. As an application, a time-asymptotic formula for the solution of the original non-stationary equation is derived.
@article{IM2_1996_60_6_a6,
     author = {S. A. Stepin},
     title = {The {Rayleigh} hydrodynamical problem: a~theorem on eigenfunction expansion and the stability of plane-parallel flows},
     journal = {Izvestiya. Mathematics },
     pages = {1293--1316},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a6/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - The Rayleigh hydrodynamical problem: a~theorem on eigenfunction expansion and the stability of plane-parallel flows
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1293
EP  - 1316
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a6/
LA  - en
ID  - IM2_1996_60_6_a6
ER  - 
%0 Journal Article
%A S. A. Stepin
%T The Rayleigh hydrodynamical problem: a~theorem on eigenfunction expansion and the stability of plane-parallel flows
%J Izvestiya. Mathematics 
%D 1996
%P 1293-1316
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a6/
%G en
%F IM2_1996_60_6_a6
S. A. Stepin. The Rayleigh hydrodynamical problem: a~theorem on eigenfunction expansion and the stability of plane-parallel flows. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1293-1316. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a6/

[1] Lin Ts. Ts., Teoriya gidrodinamicheskoi ustoichivosti, IL, M., 1958

[2] Drazin P. G., Reid W. H., Hydrodynamic stability, Cambridge Univ. Press, 1993

[3] Fridrikhs K. O., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[4] Ladyzhenskaya O. A., Faddeev L. D., “K teorii vozmuschenii nepreryvnogo spektra”, DAN SSSR, 120:6 (1958), 1187–1190 | MR | Zbl

[5] Faddeev L. D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Tr. MIAN, 73, Nauka, M., 1964, 292–313 | MR | Zbl

[6] Poerschke T., Stolz G., Weidmann J., “Expansions in generalized eigenfunctions of selfadjoint operators”, Math. Z., 202 (1989), 397–408 | DOI | MR | Zbl

[7] Poerschke T., Stolz G., “On eigenfunction expansions and scattering theory”, Math. Z., 212 (1993), 337–357 | DOI | MR | Zbl

[8] Dynkin E. M., Naboko S. N., Yakovlev S. I., “Granitsa konechnosti singulyarnogo spektra v samosopryazhennoi modeli Fridrikhsa”, Algebra i analiz, 3:2 (1991), 77–90 | MR

[9] Stepin S. A., “Nesamosopryazhennaya model Fridrikhsa v teorii gidrodinamicheskoi ustoichivosti”, Funkts. analiz i ego prilozh., 29:2 (1995), 22–35 | MR | Zbl

[10] Howard L. N., “Note on a paper of John Miles”, J. Fluid Mech., 10:4 (1961), 509–512 | DOI | MR | Zbl

[11] Faddeev L. D., “K teorii ustoichivosti statsionarnykh plosko-parallelnykh techenii idealnoi zhidkosti”, Zapiski nauch. sem. LOMI, 21, Nauka, L., 1971, 164–172 | MR | Zbl

[12] Arnold V. I., “Ob usloviyakh nelineinoi ustoichivosti ploskikh statsionarnykh krivolineinykh techenii idealnoi zhidkosti”, DAN SSSR, 162:5 (1965), 975–978 | MR | Zbl

[13] Lyantse V. E., “O differentsialnom operatore so spektralnymi osobennostyami”, Matem. sb., 64:4 (1964), 521–561 ; 65:1, 47–103 | MR

[14] Koddington E. L., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[15] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 1, Fizmatgiz, M., 1963

[16] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Fizmatgiz, M.–L., 1956

[17] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 77:1 (1951), 11–14 | MR | Zbl

[18] Rosenbluth N. M., Simon A., “Necessary and sufficient condition for the stability of plane parallel inviscid flow”, Phys. fl., 7:4 (1964), 557–558 | DOI | Zbl

[19] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[20] Mises R. von, Friedrichs K. O., “Fluid dynamics”, Applied Math. Sciences, 5, Springer-Verlag, 1971 | MR | Zbl

[21] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[22] Yafaev D. R., Mathematical scattering theory, Translations of Math. Monographs, 105, AMS, 1992 | MR | Zbl

[23] Stepin S. A., “Ustoichivost resheniya zadachi Koshi dlya uravneniya Releya”, UMN, 46:6 (1991), 170–171 | MR

[24] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987 | MR