The equivariant cohomology groups of a~real algebraic surface and their applications
Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1193-1217.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact sequences connecting the equivariant cohomology groups of a real algebraic surface are constructed, and sufficient conditions for the convergence of the second spectral sequence are established. The results obtained are applied to the study of the topology of a surface and to the determination of the Brauer group.
@article{IM2_1996_60_6_a3,
     author = {V. A. Krasnov},
     title = {The equivariant cohomology groups of a~real algebraic surface and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {1193--1217},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The equivariant cohomology groups of a~real algebraic surface and their applications
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1193
EP  - 1217
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a3/
LA  - en
ID  - IM2_1996_60_6_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The equivariant cohomology groups of a~real algebraic surface and their applications
%J Izvestiya. Mathematics 
%D 1996
%P 1193-1217
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a3/
%G en
%F IM2_1996_60_6_a3
V. A. Krasnov. The equivariant cohomology groups of a~real algebraic surface and their applications. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1193-1217. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a3/

[1] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[2] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl

[3] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[4] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Proceedings of the 8th Algebraic Geometry Conference, Yaroslavl', 1992, 113–136 | MR

[5] Krasnov V. A., “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 | MR | Zbl

[6] Krasnov V. A., “O klassakh kogomologii, opredelennykh veschestvennymi tochkami veschestvennoi algebraicheskoi GM-poverkhnosti”, Izv. RAN. Ser. matem., 57:5 (1993), 210–221 | MR | Zbl

[7] Krasnov V. A., “Ekvivariantnoe otobrazhenie tsikla na veschestvennom algebraicheskom mnogoobrazii”, Izv. RAN. Ser. matem. (to appear)

[8] Krasnov V. A., “Algebraicheskie tsikly na veschestvennom algebraicheskom $\mathrm {GM}$-mnogoobrazii i ikh prilozheniya”, Izv. RAN. Ser. matem., 57:4 (1993), 153–173 | MR | Zbl

[9] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR