Some families of Abelian surfaces
Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 1083-1093

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for all algebraic curves $\Gamma$ that are coverings of given degree $n$ of a given curve $\Gamma_0$ and all non-constant families of “false elliptic curves” over $\Gamma$, their generic fibres belong to only finitely many types up to isomorphism over the algebraic closure of the field of rational functions on $\Gamma$. Applications to the theory of K3 surfaces are mentioned.
@article{IM2_1996_60_5_a9,
     author = {I. R. Shafarevich},
     title = {Some families of {Abelian} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1083--1093},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a9/}
}
TY  - JOUR
AU  - I. R. Shafarevich
TI  - Some families of Abelian surfaces
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1083
EP  - 1093
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a9/
LA  - en
ID  - IM2_1996_60_5_a9
ER  - 
%0 Journal Article
%A I. R. Shafarevich
%T Some families of Abelian surfaces
%J Izvestiya. Mathematics 
%D 1996
%P 1083-1093
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a9/
%G en
%F IM2_1996_60_5_a9
I. R. Shafarevich. Some families of Abelian surfaces. Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 1083-1093. http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a9/