The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells
Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 1027-1059.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved concerning solutions of the Marguerre–Vlasov system of equations without taking into consideration the inertia of lateral displacements and with fixed edge boundary conditions. These results include global (with respect to time) a priori bounds on solutions, the classical solubility and the regularity of solutions.
@article{IM2_1996_60_5_a7,
     author = {V. I. Sedenko},
     title = {The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells},
     journal = {Izvestiya. Mathematics },
     pages = {1027--1059},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a7/}
}
TY  - JOUR
AU  - V. I. Sedenko
TI  - The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1027
EP  - 1059
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a7/
LA  - en
ID  - IM2_1996_60_5_a7
ER  - 
%0 Journal Article
%A V. I. Sedenko
%T The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells
%J Izvestiya. Mathematics 
%D 1996
%P 1027-1059
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a7/
%G en
%F IM2_1996_60_5_a7
V. I. Sedenko. The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells. Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 1027-1059. http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a7/

[1] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 747–784 | MR

[2] Sedenko V. I., “Edinstvennost obobschennogo resheniya nachalno-kraevoi zadachi nelineinoi teorii kolebanii pologikh obolochek”, Dokl. AN SSSR, 316:6 (1991), 1319–1322 | MR | Zbl

[3] Sedenko V. I., “Teorema edinstvennosti obobschennogo resheniya nachalno-kraevoi zadachi nelineinoi teorii kolebanii pologikh obolochek s maloi inertsiei prodolnykh peremeschenii”, Izv. AN SSSR. Ser. mekh. tv. tela., 1991, no. 6, 142–150

[4] Morozov N. F., “O nelineinykh kolebaniyakh tonkikh plastin s uchetom inertsii vrascheniya”, Dokl. AN SSSR, 176:3 (1967), 522–525 | MR | Zbl

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[6] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[7] Ladyzhenskaya O. A. Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR | Zbl

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR