Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1996_60_5_a0, author = {V. V. Bavula}, title = {Classification of modules {Gel'fand--Kirillov} dimension $n$ and multiplicity~1 over the {Weyl} algebra~$A_n$}, journal = {Izvestiya. Mathematics }, pages = {877--885}, publisher = {mathdoc}, volume = {60}, number = {5}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a0/} }
TY - JOUR AU - V. V. Bavula TI - Classification of modules Gel'fand--Kirillov dimension $n$ and multiplicity~1 over the Weyl algebra~$A_n$ JO - Izvestiya. Mathematics PY - 1996 SP - 877 EP - 885 VL - 60 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a0/ LA - en ID - IM2_1996_60_5_a0 ER -
V. V. Bavula. Classification of modules Gel'fand--Kirillov dimension $n$ and multiplicity~1 over the Weyl algebra~$A_n$. Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 877-885. http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a0/
[1] Block R. E., “Classification of the irreducible representations of $\operatorname {sl}(2,\mathbb C)$”, Bull. Amer. Math. Soc., 1:1 (1979), 247–250 | DOI | MR | Zbl
[2] Block R. E., “The irreducible representations of the Lie algebra $\operatorname {sl}(2)$ and of the Weyl algebra”, Adv. Math., 39 (1981), 69–110 | DOI | MR | Zbl
[3] Bavula V. V., “Obobschennye algebry Veilya i ikh predstavleniya”, Algebra i analiz, 4:1 (1992), 75–97 | MR | Zbl
[4] Bavula V. V., “Prostye $D[X,Y;\sigma,a]$-moduli”, Ukr. matem. zhurn., 44:12 (1992), 1628–1644 | MR | Zbl
[5] Bernshtein I. N., “Moduli nad koltsom differentsialnykh operatorov. Izuchenie fundamentalnykh reshenii uravnenii s postoyannymi koeffitsientami”, Funkts. analiz i ego prilozh., 5:2 (1971), 1–16 | MR
[6] Bavula V. V., “Krainie moduli nad algebroi Veilya $A_n$”, Ukr. matem. zhurn., 45:5 (1993)
[7] Stafford J. T., “Non-holonomic modules over Weyl algebras and enveloping algebras”, Invent. Math., 92–93 (1985), 619–638 | DOI | MR
[8] Bavula V. V., “Krainie moduli nad algebroi Veilya $A_n$:”, Tez. dokl. Vsesoyuzn. shkoly po teorii operatorov v funkts. prostr., Nizhnii Novgorod, 1991, 16 | Zbl
[9] Roos J. E., “Sur les foncteurs derives de lim. Applications”, C. R. Acad. Sci., 252:24 (1961), 3702–3704 | MR | Zbl
[10] Gabriel P., Rentschler R., “Sur la dimension des anneaux et ensembles ordonnées”, C. R. Acad. Sci., 265 (1967), 712–715 | MR | Zbl
[11] Dixmier J., “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | MR | Zbl
[12] Björk J. E., Rings of differential operator, North Holland, Amsterdam, 1979 | MR | Zbl