On non-connected simple linear groups with a~free algebra of invariants
Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 811-856

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study non-connected coregular (that is, with a free algebra of invariants) linear groups. A criterion for the coregularity of a semisimple group $G\subseteq \operatorname{GL}(V)$ is obtained in terms of the action of $G/G^0$ on the quotient variety $V/G^0$. A classification of connected non-coregular simple linear groups which admit a finite coregular extension is found and such extensions are described in each case.
@article{IM2_1996_60_4_a3,
     author = {D. A. Shmel'kin},
     title = {On non-connected simple linear groups with a~free algebra of invariants},
     journal = {Izvestiya. Mathematics },
     pages = {811--856},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/}
}
TY  - JOUR
AU  - D. A. Shmel'kin
TI  - On non-connected simple linear groups with a~free algebra of invariants
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 811
EP  - 856
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/
LA  - en
ID  - IM2_1996_60_4_a3
ER  - 
%0 Journal Article
%A D. A. Shmel'kin
%T On non-connected simple linear groups with a~free algebra of invariants
%J Izvestiya. Mathematics 
%D 1996
%P 811-856
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/
%G en
%F IM2_1996_60_4_a3
D. A. Shmel'kin. On non-connected simple linear groups with a~free algebra of invariants. Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 811-856. http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/