On non-connected simple linear groups with a~free algebra of invariants
Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 811-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study non-connected coregular (that is, with a free algebra of invariants) linear groups. A criterion for the coregularity of a semisimple group $G\subseteq \operatorname{GL}(V)$ is obtained in terms of the action of $G/G^0$ on the quotient variety $V/G^0$. A classification of connected non-coregular simple linear groups which admit a finite coregular extension is found and such extensions are described in each case.
@article{IM2_1996_60_4_a3,
     author = {D. A. Shmel'kin},
     title = {On non-connected simple linear groups with a~free algebra of invariants},
     journal = {Izvestiya. Mathematics },
     pages = {811--856},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/}
}
TY  - JOUR
AU  - D. A. Shmel'kin
TI  - On non-connected simple linear groups with a~free algebra of invariants
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 811
EP  - 856
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/
LA  - en
ID  - IM2_1996_60_4_a3
ER  - 
%0 Journal Article
%A D. A. Shmel'kin
%T On non-connected simple linear groups with a~free algebra of invariants
%J Izvestiya. Mathematics 
%D 1996
%P 811-856
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/
%G en
%F IM2_1996_60_4_a3
D. A. Shmel'kin. On non-connected simple linear groups with a~free algebra of invariants. Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 811-856. http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a3/

[1] Kac V. G., Popov V. L., Vinberg E. B., “Sur les groupes algebriques, dont l'algebre des invariants est libre”, C.r. Acad. sci. Paris. Ser. A, 283 (1976), 875–878 | MR | Zbl

[2] Adamovich O. M., Golovina E. O., “Prostye lineinye gruppy, imeyuschie svobodnuyu algebru invariantov”, Vopr. teorii grupp i gomol. algebry, Yaroslavl, 1979, 3–41 | MR | Zbl

[3] Schwarz G. W., “Representation of simple Lie groups with regular rings of invariants”, Inv. Math., 49 (1978), 167–191 | DOI | MR | Zbl

[4] Shmel'kin D. A., “Coregular algebraic linear groups, locally isomorphic to $\operatorname {SL}_2$”, Lie groups, their discrete subgroups and invariant theory, Advances in Soviet Mathematics, 8, 1992, 173–190 | MR | Zbl

[5] Nakajima H., “Representation of a reductive algebraic groups, whose algebra of invariants are complete intersection”, J. reine angew. math., 367 (1986), 115–138 | MR | Zbl

[6] Nakajima H., “Algebraic tori, admitting finite coregular extensions”, Proc. Japan Acad. Ser A, 68:9 (1992), 273–278 | DOI | MR | Zbl

[7] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. probl. matem. fundam. napravl, 55, VINITI, M., 1989, 137–309 | MR

[8] Panyushev D. I., “O poluprostykh gruppakh, dopuskayuschikh konechnoe koregulyarnoe rasshirenie”, Funkts. analiz i ego prilozh., 27:3 (1993), 82–84 | MR | Zbl

[9] Panyushev D. I., “Klassifikatsiya chetyrekhmernykh antikommutativnykh algebr s netrivialnoi gruppoi avtomorfizmov”, Voprosy teorii grupp i gomol. algebry, Yaroslavl, 1982, 98–106 | MR | Zbl

[10] Beklemishev N. D., “Invarianty kubicheskikh form ot chetyrekh peremennykh”, Vestnik MGU. Ser. mat., mekh., 2 (1982), 42–49 | MR | Zbl

[11] Gurevich G. B., Osnovy teorii algebraicheskikh invariantov, Gostekhizdat, M., 1948 | MR

[12] Salmon G., Lecons d'algebre superieure, Gauttiers Villars, P., 1890 | Zbl

[13] Teranyshi Y., “The ring of invariants of matrices”, Nagoya Math. J., 104 (1986), 149–161 | MR

[14] Knop F., Littelmann P., “Der Grad erzeugender Funktionen von Invariantenringen”, Math. Z., 196 (1987), 211–229 | DOI | MR | Zbl

[15] Broer B., Hilbert series in the invariant theory, Thesis, Rijksuniversiteit Utrecht, 1990 | MR

[16] Brion M., “Representation exceptionelles des groups semisimples”, Ann. Sci. E.N.S., 18 (1985), 345–387 | MR | Zbl

[17] Elashvili A. G., “Kanonicheskii vid i statsionarnye podgruppy tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:1 (1972), 51–62 | MR | Zbl

[18] Elashvili A. G., “Statsionarnye podalgebry tochek obschego polozheniya dlya neprivodimykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:2 (1972), 65–78 | MR | Zbl

[19] Popov A. M., “Konechnye statsionarnye podgruppy obschego polozheniya prostykh lineinykh grupp Li”, Tr. MMO, 48, URSS, M., 1985, 7–59 | MR

[20] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov devyatimernogo prostranstva”, Tr. seminara po vektornomu i tenzornomu analizu, 18, Izd-vo MGU, M., 1978, 197–233 | MR

[21] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[22] Nakajima H., “Finite coregular extensions of a reductive algebraic group”, Hiyoshi Review of Nat. Sci. Keio University, 12 (1992), 88–94 | MR

[23] Couture M., Sharp R. T., “Reductions of enveloping algebras of low-rank groups”, J. Phys. Ser. A: Math. Gen., 13 (1980), 1925–1945 | DOI | MR | Zbl

[24] Kraft Kh., Geometricheskaya teoriya invariantov, Mir, M., 1987 | Zbl

[25] Shmelkin D. A., “O nesvyaznykh koregulyarnykh prostykh gruppakh”, UMN, 50:3 (1995), 169–170 | MR | Zbl