Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces
Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 763-809.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give criteria for the parabolicity and hyperbolicity of the boundary sets of surfaces $F=(D,ds^2_F)$, where $D$ is a domain in $\mathbb R^n$ and $ds^2_F$ is the square of the length element on $F$. We prove the parabolicity of certain boundary sets located on the graphs of the solutions of equations of minimal surface type. As an example we present a generalized maximum principle for the derivatives of solution of equations of minimal surface type where domains of $\mathbb R^n$ become “narrow” at infinity. We formulate criteria for the parabolicity and hyperbolicity of boundary sets on the graphs of spacelike surfaces in Minkowski space $\mathbb R_1^{n+1}$, and in particular, we obtain an essential strengthening of the theorem of Choi and Treibergs on the hyperbolicity of the graphs of entire solutions of the constant mean curvature equation in $\mathbb R_1^3$.
@article{IM2_1996_60_4_a2,
     author = {V. M. Miklyukov},
     title = {Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {763--809},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a2/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 763
EP  - 809
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a2/
LA  - en
ID  - IM2_1996_60_4_a2
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces
%J Izvestiya. Mathematics 
%D 1996
%P 763-809
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a2/
%G en
%F IM2_1996_60_4_a2
V. M. Miklyukov. Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces. Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 763-809. http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a2/

[1] Hildebrandt S., “Liouville theorems for harmonic mappings and approach to Bernstein theorems”, Ann. Math. Stud., 102 (1982), 107–131 | MR

[2] Yau S. T., “Nonlinear analysis in geometry”, L`Enseignement Mathematique, 33 (1987), 109–158 | MR | Zbl

[3] Milnor J., “On deciding whether a surface is parabolic or hyperbolic”, Amer. Math. Monthly, 84:1 (1977), 43–46 | DOI | MR | Zbl

[4] Suvorov G. D., Semeistva ploskikh topologicheskikh otobrazhenii, Izd–vo SO AN SSSR, Novosibirsk, 1965 | MR

[5] Finn R., “On equations of minimal surface type”, Ann. of Math., 60:3 (1954), 397–416 | DOI | MR | Zbl

[6] Cheng S.-Y., Yau S.-T., “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28 (1975), 333–354 | DOI | MR | Zbl

[7] Grötsch H., “Über einige Extremalprobleme der konformen Abbildung. I; II”, Ber. Sachs. Akad., Leipzig, 80 (1928), 367–376; 497–502

[8] Teichmüller O., “Untersuchungen über konforme und quasikonforme Abbildung”, Deutsche Math., 3 (1938), 621–678 | Zbl

[9] Bernshtein S. N., Sobr. soch. T. 3. Ob odnoi geometricheskoi teoreme i ee prilozheniyakh k uravneniyam v chastnykh proizvodnykh ellipticheskogo tipa, Izd-vo AN SSSR, M., 1960, S. 251–258

[10] Bers L., “Isolated singularities of minimal surfaces”, Ann. of Math., 53 (1951), 364–386 | DOI | MR | Zbl

[11] Choi H. I., Treibergs A., “Hyperbolicity of constant mean curvature surfaces of Minkowski Space”, Proceed. of the first Pacific Rim Conference in Geometric Analysis heltd at The Chinese Univ. of Hong Kong (Dec. 16–19, 1992), Intern. Press (to appear)

[12] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[13] Heinonen J., Kilpelainen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, 1993, P. 363 | MR | Zbl

[14] Saks S., Teoriya integrala, IL, M., 1949

[15] Fuglede B., “Extremal length and functional completetion”, Acta Math., 98:3, 4 (1957), 171–219 | DOI | MR | Zbl

[16] Ziemer W. P., “Extremal length and $p$-capacity”, Michigan Math. J., 16 (1969), 43–51 | DOI | MR | Zbl

[17] Miklyukov V. M., “Ob odnom novom podkhode k teoreme Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Matem. sb., 108(150):2 (1979), 268–289 | MR

[18] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[19] Pesin I. N., “Otobrazheniya, kvazikonformnye v srednem”, Dokl. AN SSSR, 187:4 (1969), 740–742 | MR | Zbl

[20] Lehto O., “Homeomorphisms with a given dilatation”, Lect. Notes Math., 118 (1970), 58–73 | DOI | MR | Zbl

[21] Miklyukov V. M., Suvorov G. D., “O suschestvovanii i edinstvennosti kvazikonformnykh otobrazhenii s neogranichennymi kharakteristikami”, Doslidzhennya z teori\"{ı} funktsii kompleksno\"{ı} zminno\"{ı} ta \"{ı} \"{ı} zastosuvan, In-t matematiki AN URSR, Ki\"{ı}v, 1972, 45–53

[22] Kruglikov V. I., “O suschestvovanii i edinstvennosti otobrazhenii, kvazikonformnykh v srednem”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 4, Nauk. dumka, Kiev, 1973, 123–147 | MR

[23] David G., “Solutions de l`equation de Beltrami aves $\|\mu \|=1$”, Annal. Acad. Sci. Fennice. Ser. A.I. Math., 13 (1988), 25–70 | MR | Zbl

[24] Tkachev V. G., Ushakov A. N., “Teorema Fuglede v finslerovom prostranstve”, Tez. dokl. Vsesoyuzn. shkoly “Teoriya potentsiala”, In-t matematiki AN URSR, Kiev, 1991, 19

[25] Keselman V. M., “O rimanovykh mnogoobraziyakh $p$-parabolicheskogo tipa”, Izv. VUZov. Matematika, 1985, no. 4, 81–83 | MR | Zbl

[26] Reshetnyak Yu. G., “Nekotorye geometricheskie svoistva funktsii i otobrazhenii s obobschennymi proizvodnymi”, Sib. matem. zhurn., 7:5 (1966), 886–919 | MR | Zbl

[27] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[28] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[29] Klyachin A. A., Miklyukov V. M., “Sledy funktsii s prostranstvennopodobnymi grafikami i zadacha o prodolzhenii pri ogranicheniyakh na gradient”, Matem. sb., 183:7 (1992), 49–64 | MR

[30] Miklyukov V. M., Tkachev V. G., “O stroenii v tselom vneshne polnykh minimalnykh poverkhnostei v $\mathbb R^3$”, Izv. VUZov. Matematika, 1987, no. 7, 30–36 | MR | Zbl

[31] Keselman V. M., Miklyukov V. M., “O povedenii v tselom neogranichennykh giperpoverkhnostei s kvazikonformnym gaussovym otobrazheniem”, Sib. matem. zhurn., 25:6 (1984), 195 | MR

[32] Mazya V. G., Prostranstva S.L. Soboleva, Izd-vo Leningradskogo un-ta, L., 1985 | MR | Zbl

[33] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na rimanovom mnogoobrazii”, UMN, 37:3(225) (1982), 181–182 | MR | Zbl

[34] Vittikh G., Noveishie issledovaniya po odnoznachnym analiticheskim funktsiyam, Fizmatgiz, M., 1960 | MR

[35] Nitsche J. C. C., “On new results in the theory of minimal surfaces”, Bull. Amer. Math. Soc., 71:2 (1965), 195–270 ; Matematika. Sb. perevodov, 2:3 (1967), 37–100 | DOI | MR | Zbl

[36] Osserman R., “Minimalnye poverkhnosti”, UMN, 22:4 (1967), 55–136 | MR | Zbl

[37] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[38] Miklyukov V. M., “Nekotorye osobennosti povedeniya reshenii uravnenii tipa minimalnoi poverkhnosti v neogranichennykh oblastyakh”, Matem. sb., 116(158):1 (1981), 72–86 | MR | Zbl

[39] Miklyukov V. M., “Emkost i obobschennyi printsip maksimuma dlya kvazilineinykh uravnenii ellipticheskogo tipa”, Dokl. AN SSSR, 250:6 (1980), 1318–1320 | MR | Zbl

[40] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1985

[41] Cheng S.-Y., Yau S.-T., “Maximal spacelike hypersurfaces in Lorentz–Minkowski spaces”, Ann. Math., 104 (1976), 407–419 | DOI | MR | Zbl

[42] Bartnik R., Simon L., “Spacelike Hypersurfaces with Prescribed Boundary Values and Mean Curvature”, Comm. Math. Phys., 87:1 (1982), 131–152 | DOI | MR | Zbl

[43] Choi H. I., Treibergs A., “Constructing Harmonic Maps into the Hyperbolic Space”, Part 1, Proc. of Symp. in Pure Math., 54, 1993 | MR

[44] Treibergs A., “Entire Spacelike Hypersurfaces of constant mean curvature in Minkowsky Space”, Invent. Math., 66 (1982), 39–56 | DOI | MR | Zbl

[45] Choi H. I., Treibergs A., “New examples of harmonic diffeomorphisms of the hyperbolic plane to itself”, Manuscripta Math., 62 (1988), 249–256 | DOI | MR | Zbl

[46] Choi H. I., Treibergs A., “Gauss map of spacelike constant mean curvature hypersurface of Minkowski Space”, J. Diff. Geom., 32 (1990), 775–817 | MR | Zbl

[47] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 206–217 | MR

[48] Miklyukov V. M., “Maksimalnye trubki i lenty v prostranstve Minkovskogo”, Matem. sb., 183:12 (1992), 45–76 | Zbl

[49] Klyachin V. A., Miklyukov V. M., “Usloviya konechnosti vremeni suschestvovaniya maksimalnykh trubok i lent v iskrivlennykh lorentsevykh proizvedeniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 196–210 | MR | Zbl

[50] Miklyukov V. M., “O kriticheskikh tochkakh reshenii uravnenii tipa maksimalnykh poverkhnostei v prostranstve Minkovskogo”, Teoriya otobrazhenii i priblizheniya funktsii, Nauk. dumka, Kiev, 1989, 112–125

[51] Artykbaev A., Sokolov D. D., Geometriya v tselom v ploskom prostranstve-vremeni, FAN, Tashkent, 1991 | Zbl

[52] Miklyukov V. M., “Space-Like Tubes of Zero Mean Curvature in Minkowski Space”, Advances in Geometric Analysis Continuum Mechanics, International Press Inc., Boston, 1995, 209–224 | MR | Zbl

[53] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl