On formulae for the class number of real Abelian fields
Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 695-761

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given real Abelian field $k$ and a given prime natural number $\ell$ we obtain an index formula for the order of the group $\operatorname{Cl}(k)_{\ell,\varphi}$, where $\operatorname{Cl}(k)_{\ell}$ is the $\ell$-component of the class group of $k$ $\operatorname{Cl}(k)_{\ell,\varphi}$ denotes the $\varphi$-component of $\operatorname{Cl}(k)_\ell$ corresponding to a ${\mathbf Q}_\ell$-irreducible character $\varphi$ of the Galois group $G(k/{\mathbf Q})$ that is trivial on the Sylow $\ell$-subgroup of $G(k/{\mathbf Q})$. This result generalizes a conjecture of Gras. The proofs rely on the “main conjecture” of Iwasawa theory.
@article{IM2_1996_60_4_a1,
     author = {L. V. Kuz'min},
     title = {On formulae for the class number of real {Abelian} fields},
     journal = {Izvestiya. Mathematics },
     pages = {695--761},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - On formulae for the class number of real Abelian fields
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 695
EP  - 761
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/
LA  - en
ID  - IM2_1996_60_4_a1
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T On formulae for the class number of real Abelian fields
%J Izvestiya. Mathematics 
%D 1996
%P 695-761
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/
%G en
%F IM2_1996_60_4_a1
L. V. Kuz'min. On formulae for the class number of real Abelian fields. Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 695-761. http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/