On formulae for the class number of real Abelian fields
Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 695-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given real Abelian field $k$ and a given prime natural number $\ell$ we obtain an index formula for the order of the group $\operatorname{Cl}(k)_{\ell,\varphi}$, where $\operatorname{Cl}(k)_{\ell}$ is the $\ell$-component of the class group of $k$ $\operatorname{Cl}(k)_{\ell,\varphi}$ denotes the $\varphi$-component of $\operatorname{Cl}(k)_\ell$ corresponding to a ${\mathbf Q}_\ell$-irreducible character $\varphi$ of the Galois group $G(k/{\mathbf Q})$ that is trivial on the Sylow $\ell$-subgroup of $G(k/{\mathbf Q})$. This result generalizes a conjecture of Gras. The proofs rely on the “main conjecture” of Iwasawa theory.
@article{IM2_1996_60_4_a1,
     author = {L. V. Kuz'min},
     title = {On formulae for the class number of real {Abelian} fields},
     journal = {Izvestiya. Mathematics },
     pages = {695--761},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - On formulae for the class number of real Abelian fields
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 695
EP  - 761
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/
LA  - en
ID  - IM2_1996_60_4_a1
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T On formulae for the class number of real Abelian fields
%J Izvestiya. Mathematics 
%D 1996
%P 695-761
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/
%G en
%F IM2_1996_60_4_a1
L. V. Kuz'min. On formulae for the class number of real Abelian fields. Izvestiya. Mathematics , Tome 60 (1996) no. 4, pp. 695-761. http://geodesic.mathdoc.fr/item/IM2_1996_60_4_a1/

[1] Cornell G., “Exponential growth of the $\ell $-rank of the class group of the maximal real subfield of cyclotomic fields”, Bull. Amer. Math. Soc., 8:1 (1983), 55–58 | DOI | MR | Zbl

[2] Gras G., “Classes d'ideaux des corps abélienn et nombres de Bernoulli généralisés”, Ann. Inst. Fourier, 27 (1977), 1–66 | MR | Zbl

[3] Greenberg R., “On the Iwasawa invariants of totally real number fields”, Amer. J. Math., 98:1 (1976), 263–284 | DOI | MR | Zbl

[4] Greither C., “Class groups of abelian fields, and the main conjecture”, Ann. Inst. Fourier, 42 (1992), 449–499 | MR

[5] Iwasawa K., Lectures on $p$-adic $L$-functions, Princeton Univ. Press; Univ. of Tokyo Press, Princeton, 1972 | MR | Zbl

[6] Kolyvagin V. A., “Euler systems”, The Grothendieck Festschrift, V. 2, Birkhäuser Verlag, 1990, 435–483 | MR

[7] Kubert D. S., “The universal ordinary distribution”, Bull. Soc. math. France, 107 (1979), 179–202 | MR | Zbl

[8] Kubert D. S., “The ${\mathbf Z}/2{\mathbf Z}$ cohomology of the universal ordinary distribution”, Bull. Soc. math. France, 107 (1979), 203–224 | MR | Zbl

[9] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36:2 (1972), 267–327 | MR | Zbl

[10] Kuzmin L. V., “Nekotorye teoremy dvoistvennosti dlya krugovykh $\Gamma $-rasshirenii polei algebraicheskikh chisel CM-tipa”, Izv. AN SSSR. Ser. matem., 43:3 (1979), 483–546 | MR | Zbl

[11] Kuzmin L. V., “Nekotorye yavnye vychisleniya v lokalnykh i globalnykh krugovykh polyakh”, Tr. Matem. in-ta RAN, 208 (1995), 202–223 | MR

[12] Lang S., Cyclotomic fields. I, II, combined 2-nd edition, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990 | MR

[13] Mazur B., Wiles A., “Class fields of abelian extensions of ${\mathbf Q}$”, Invent. math., 76 (1984), 179–330 | DOI | MR | Zbl

[14] Rubin K., “Global units and ideal class groups”, Invent. Math., 89 (1987), 511–526 | DOI | MR | Zbl

[15] Sinnott W., “On the Stickelberger ideal and the circular units of a cyclotomic field”, Ann. of Math., 108 (1978), 107–134 | DOI | MR | Zbl

[16] Sinnott W., “On the Stickelberger ideal and the circular units of an abelian field”, Invent. math., 62 (1980), 181–234 | DOI | MR | Zbl

[17] Wiles A., “The Iwasawa conjecture for totally real fields”, Ann. of Math., 131 (1990), 493–540 | DOI | MR | Zbl