Differential operators on graded algebras
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 281-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some general questions concerning the definition and study of abstract differential operators on associative graded algebras. Certain relations between special classes of these operators are studied. We prove some structure theorems and analogues of the density theorem for algebras of differential operators. As an illustration, classical and quantum Serre algebras are considered.
@article{IM2_1996_60_2_a2,
     author = {D. P. Zhelobenko},
     title = {Differential operators on graded algebras},
     journal = {Izvestiya. Mathematics },
     pages = {281--303},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a2/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Differential operators on graded algebras
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 281
EP  - 303
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a2/
LA  - en
ID  - IM2_1996_60_2_a2
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Differential operators on graded algebras
%J Izvestiya. Mathematics 
%D 1996
%P 281-303
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a2/
%G en
%F IM2_1996_60_2_a2
D. P. Zhelobenko. Differential operators on graded algebras. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 281-303. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a2/

[1] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1982 | MR

[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1977

[3] Zhelobenko D. P., Predstavleniya reduktivnykh algebr Li, Nauka, M., 1994 | MR | Zbl

[4] Zhelobenko D. P., “Algebra kvantovykh bozonov, filtratsiya Shuberta i bazisy Lyustiga”, Izv. RAN. Ser. matem., 57:6 (1993), 3–32 | MR

[5] Zhelobenko D. P., “Filtratsiya Shuberta i kvazidifferentsirovaniya v kvantovykh algebrakh Serra”, Vestn. RUDN, 2:2 (1995), 3–11 | MR

[6] Zhelobenko D. P., “Contragredient algebras”, J. on Group Theory in Physics, 1:1 (1993), 201–233

[7] Zhelobenko D. P., “Algebry kartanovskogo tipa”, Dokl. RAN, 339:4 (1994), 442–445 | Zbl

[8] Kats V. G., Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[9] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 122 (1990), 249–260 | DOI | MR

[10] Lusztig G., “Canonical bases arizing from quantized enveloping algebras”, J. of Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl

[11] Manin Yu. I., Quantum groups and non-commutative geometry, CRM Univ., Montreal, 1988 | MR | Zbl

[12] Noumi M., Umeda I., Wakayama M., A qauntum analogue of the Capelly identity and an elementary differential calculus on GL${}_q(n)$, Preprint, Univ. of Tokyo, 1991

[13] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Nauka, M., 1995 | MR | Zbl

[14] Serr Zh.-P., Gruppy i algebry Li, Mir, M., 1969 | MR | Zbl