Estimates for a~uniform modulus of continuity of functions from symmetric spaces
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 233-250

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a multidimensional “correctability” theorem of the Oskolkov type for a function given in $\mathbb R^n$ whereby a sharp quantitative estimate for the uniform modulus of continuity of a function on “large” sets is given if an estimate of the modulus of continuity of this function in a symmetric space is known. We show that an estimate of a uniform modulus of continuity depends only on the eigenfunction of the symmetric space.
@article{IM2_1996_60_2_a0,
     author = {E. I. Berezhnoi},
     title = {Estimates for a~uniform modulus of continuity of functions from symmetric spaces},
     journal = {Izvestiya. Mathematics },
     pages = {233--250},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Estimates for a~uniform modulus of continuity of functions from symmetric spaces
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 233
EP  - 250
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a0/
LA  - en
ID  - IM2_1996_60_2_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Estimates for a~uniform modulus of continuity of functions from symmetric spaces
%J Izvestiya. Mathematics 
%D 1996
%P 233-250
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a0/
%G en
%F IM2_1996_60_2_a0
E. I. Berezhnoi. Estimates for a~uniform modulus of continuity of functions from symmetric spaces. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 233-250. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a0/