Estimates for a~uniform modulus of continuity of functions from symmetric spaces
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 233-250
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a multidimensional “correctability” theorem of the Oskolkov type for a function given in $\mathbb R^n$ whereby a sharp quantitative estimate for the uniform modulus of continuity of a function on “large” sets is given if an estimate of the modulus of continuity of this function in a symmetric space is known. We show that an estimate of a uniform modulus of continuity depends only on the eigenfunction of the symmetric space.
@article{IM2_1996_60_2_a0,
author = {E. I. Berezhnoi},
title = {Estimates for a~uniform modulus of continuity of functions from symmetric spaces},
journal = {Izvestiya. Mathematics },
pages = {233--250},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a0/}
}
E. I. Berezhnoi. Estimates for a~uniform modulus of continuity of functions from symmetric spaces. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 233-250. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a0/