On a~measure of irrationality for values of $G$-functions
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 91-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that values of $G$-functions satisfying a system of linear differential equations are irrational at rational points $a/b$ with $a\in\mathbb Z$ and $b\in\mathbb N$ such that $b>C(\varepsilon)|a|^{2+\varepsilon}$ for an arbitrary positive $\varepsilon$. In the case of a generalized polylogarithmic function $$ f(z)=\sum_{\nu=1}^\infty\frac{z^\nu}{(\nu+\lambda)^m}, \quad m\geqslant 2, \enskip \lambda\in\mathbb Q\setminus\{-1,-2,\dots\}, $$ an explicit form of $C(\varepsilon)$ is found.
@article{IM2_1996_60_1_a3,
     author = {W. V. Zudilin},
     title = {On a~measure of irrationality for values of $G$-functions},
     journal = {Izvestiya. Mathematics },
     pages = {91--118},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - On a~measure of irrationality for values of $G$-functions
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 91
EP  - 118
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/
LA  - en
ID  - IM2_1996_60_1_a3
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T On a~measure of irrationality for values of $G$-functions
%J Izvestiya. Mathematics 
%D 1996
%P 91-118
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/
%G en
%F IM2_1996_60_1_a3
W. V. Zudilin. On a~measure of irrationality for values of $G$-functions. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 91-118. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/

[1] Siegel C. L., “Über einige Anwendungen diophantischer Approximationen”, Abh. Preuss. Wiss. Phys.–Math. Kl., 1929–1930, no. 1, 1–70 | Zbl

[2] Nurmagomedov M. S., “Ob arifmeticheskikh svoistvakh znachenii $G$-funktsii”, Matem. sb., 85 (127):3 (7) (1971), 339–365 | MR | Zbl

[3] Nurmagomedov M. S., Chirskii V. G., “Ob arifmeticheskikh svoistvakh znachenii nekotorykh funktsii”, Vestn. MGU. Ser. 1. Matem., mekhanika, 1973, no. 1, 19–26 ; no. 2, 38–45 | MR | Zbl

[4] Galochkin A. I., “Otsenki snizu mnogochlenov ot znachenii analiticheskikh funktsii odnogo klassa”, Matem. sb., 95 (137):3 (11) (1974), 396–417 | MR | Zbl

[5] Galochkin A. I., “Otsenki snizu lineinykh form ot znachenii nekotorykh $G$-funktsii”, Matem. zametki, 18:4 (1975), 541–552 | MR | Zbl

[6] Chudnovsky D. V., Chudnovsky G. V., “Applications of Padé approximations to Diophan-{-}tine inequalities in values of $G$-functions”, Lecture Notes in Math., 1135 (1985), 9–51 | DOI | MR | Zbl

[7] André Y., $G$-functions and Geometry, Aspects of Mathematics, E13, Vieweg, Braunshweig, 1989 | MR

[8] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[9] Chudnovsky G. V., “On some applications of diophantine approximations”, Proc. Nat. Acad. Sci. USA, 81, March (1984), 1926–1930 | DOI | MR | Zbl

[10] Zudilin V. V., “O ratsionalnykh priblizheniyakh znachenii odnogo klassa tselykh funk-{-}tsii”, Matem. sb., 186:4 (1995), 89–124 | MR | Zbl

[11] Hata M., “On the linear independence of the values of polylogarithmic functions”, J. de Mathématiques pures et appliquées, 69:2 (1990), 133–173 | MR | Zbl

[12] Matveev E. M., “Ob arifmeticheskikh svoistvakh znachenii obobschennykh binomialnykh mnogochlenov”, Matem. zametki, 54:4 (1993), 76–81 | MR | Zbl