On a~measure of irrationality for values of $G$-functions
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 91-118

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that values of $G$-functions satisfying a system of linear differential equations are irrational at rational points $a/b$ with $a\in\mathbb Z$ and $b\in\mathbb N$ such that $b>C(\varepsilon)|a|^{2+\varepsilon}$ for an arbitrary positive $\varepsilon$. In the case of a generalized polylogarithmic function $$ f(z)=\sum_{\nu=1}^\infty\frac{z^\nu}{(\nu+\lambda)^m}, \quad m\geqslant 2, \enskip \lambda\in\mathbb Q\setminus\{-1,-2,\dots\}, $$ an explicit form of $C(\varepsilon)$ is found.
@article{IM2_1996_60_1_a3,
     author = {W. V. Zudilin},
     title = {On a~measure of irrationality for values of $G$-functions},
     journal = {Izvestiya. Mathematics },
     pages = {91--118},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - On a~measure of irrationality for values of $G$-functions
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 91
EP  - 118
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/
LA  - en
ID  - IM2_1996_60_1_a3
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T On a~measure of irrationality for values of $G$-functions
%J Izvestiya. Mathematics 
%D 1996
%P 91-118
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/
%G en
%F IM2_1996_60_1_a3
W. V. Zudilin. On a~measure of irrationality for values of $G$-functions. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 91-118. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/