On a~measure of irrationality for values of $G$-functions
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 91-118
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that values of $G$-functions satisfying a system of linear differential equations are irrational at rational points $a/b$ with $a\in\mathbb Z$ and $b\in\mathbb N$ such that
$b>C(\varepsilon)|a|^{2+\varepsilon}$ for an arbitrary positive $\varepsilon$. In the case of a generalized polylogarithmic function
$$
f(z)=\sum_{\nu=1}^\infty\frac{z^\nu}{(\nu+\lambda)^m}, \quad m\geqslant 2, \enskip \lambda\in\mathbb Q\setminus\{-1,-2,\dots\},
$$
an explicit form of $C(\varepsilon)$ is found.
@article{IM2_1996_60_1_a3,
author = {W. V. Zudilin},
title = {On a~measure of irrationality for values of $G$-functions},
journal = {Izvestiya. Mathematics },
pages = {91--118},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/}
}
W. V. Zudilin. On a~measure of irrationality for values of $G$-functions. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 91-118. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a3/