Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes
Izvestiya. Mathematics, Tome 60 (1996) no. 1, pp. 67-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of analysis on the adele group (the Tate formula) of an algebraic number field, a regularization is constructed for the divergent adelic products of the gamma and beta functions of all (non-isomorphic) completions of this field. The formulae obtained are applied to representations of the four-point crossing-symmetric Veneziano amplitudes and Virasoro–Shapiro amplitudes in terms of regularized adelic products of string amplitudes (for open or closed strings) corresponding to all non-Archimedean completions of the algebraic number field under consideration.
@article{IM2_1996_60_1_a2,
     author = {V. S. Vladimirov},
     title = {Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes},
     journal = {Izvestiya. Mathematics},
     pages = {67--90},
     year = {1996},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a2/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes
JO  - Izvestiya. Mathematics
PY  - 1996
SP  - 67
EP  - 90
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a2/
LA  - en
ID  - IM2_1996_60_1_a2
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes
%J Izvestiya. Mathematics
%D 1996
%P 67-90
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a2/
%G en
%F IM2_1996_60_1_a2
V. S. Vladimirov. Adelic formulae for the gamma and beta functions of completions of algebraic number fields, and applications of them to string amplitudes. Izvestiya. Mathematics, Tome 60 (1996) no. 1, pp. 67-90. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a2/

[1] Freund P. G. O., Witten E., “Adelic String Amplitudes”, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR

[2] Volovich I. V., Lett. Math. Phys., 16 (1988), 61–67 | DOI | MR | Zbl

[3] Aref'eva I. Ya., Dragovič B. G., Volovich I. V., Phys. Lett. B, 209:4 (1988), 445–450 | DOI | MR

[4] Frampton P. H., Okada Y., Umbriaco M. R., Phys. Lett. B, 213:3 (1988), 260–262 | DOI | MR

[5] Frampton P. H., Okada Y., Phys. Rev. Lett., 60:6 (1988), 484–486 | DOI | MR

[6] Frampton P. H., Nishino H., Phys. Rev. Lett., 62:17 (1989), 1960–1963 | DOI | MR

[7] Freund P. G. O., Olson M., Phys. Lett. B, 199:2 (1987), 186–190 | DOI | MR

[8] Volovich I. V., Class. Quantum Grav., 4 (1987), L83–L87 | DOI | MR

[9] Volovich I. V., Teor. i matem. fizika, 71:3 (1987), 337–340 | MR | Zbl

[10] Aref'eva I. Ya., Dragovič B. G., Volovich I. V., Phys. Lett. B, 212:3 (1988), 283–289 | DOI | MR

[11] Vladimirov V. S., Lett. Math. Phys., 27 (1993), 123–131 | DOI | MR | Zbl

[12] Vladimirov V. S., Teor. i matem. fizika, 94:3 (1993), 355–367 | MR | Zbl

[13] Vladimirov V. S., Uspekhi matem. nauk, 48:6 (1993), 3–38 | MR | Zbl

[14] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[15] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[16] Koblits N., $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1982 | MR

[17] Gelfand I. M., Graev M. M., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[18] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[19] Schikhof W. H., Ultrametric Calculus. An Introduction to $p$-Adic Analysis, Cambridge Univ.Press, 1984 | MR | Zbl

[20] Khrennikov A., $p$-Adic Valued Distributions in Mathematical Physics, Kluver Acad. Publ., 1994 | MR | Zbl

[21] Vladimirov V. S., Volovich I. V., “Primeneniya $p$-adicheskikh chisel v matematicheskoi fizike”, Tr. Matem. in-ta im. V. A. Steklova, 200 (1991), 88–99 | Zbl

[22] Vladimirov V. S., Sapuzhak T. M., “Adelic Formulas for String Amplitudes in Fields of Algebraic Numbers”, Lett. Math. Phys., 1995 (to appear) | MR

[23] Vinogradov I. M., Osnovy teorii chisel, Gostekhizdat, M.–L., 1952 | MR

[24] Leng S., Algebraicheskie chisla, Mir, M., 1966 | MR