Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_59_6_a6, author = {E. L. Stout}, title = {Harmonic duality, hyperfunctions and removable singularities}, journal = {Izvestiya. Mathematics }, pages = {1233--1272}, publisher = {mathdoc}, volume = {59}, number = {6}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a6/} }
E. L. Stout. Harmonic duality, hyperfunctions and removable singularities. Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1233-1272. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a6/
[1] Bourbaki N., Topological Vector Spaces, Chapters 1–5, Springer-Verlag, Berlin–Heidelberg–New York, 1987 | MR | Zbl
[2] Chirka E. M., Stout E. L., “Removable singularities in the boundary”, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Vieweg, Braunschweig, 1994, 43–104 | MR
[3] Diederich K., Fornaess J. E., “Pseudoconvex domains: Existence of Stein neighborhoods”, Duke J. Math., 44 (1977), 641–662 | DOI | MR | Zbl
[4] Fornaess J. E., “Embedding strictly pseudoconvex domains in convex domains”, Amer. J. Math., 98 (1976), 529–569 | DOI | MR | Zbl
[5] Fornaess J. E., Embedding strictly pseudoconvex domains in convex domains, Thesis, University of Washington, Seattle, 1974
[6] Fornaess J. E., Stout E. L., “Spreading polydiscs on complex manifolds”, Amer. J. Math., 99 (1977), 933–960 | DOI | MR | Zbl
[7] Forstnerič F., “Embedding strictly pseoduconvex domains into balls”, Trans. Amer. Math. Soc., 295 (1986), 347–368 | DOI | MR | Zbl
[8] Harvey R., Polking J., “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl
[9] Henkin G. M., Chirka E. M., “Boundary properties of holomorphic functions of several complex variables”, J. Sov. Math., 5 (1976), 612–649 | DOI
[10] Hörmander L. V., The Analysis of Partial Differential Operators, I, Grundlehren der Mathematischen Wissenschaften, 256, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983
[11] Kashiwara M., Kawai T., Kimura T., Foundations of Algebraic Analysis, Princeton University Press, Princeton, 1986 | MR | Zbl
[12] Koethe G., Topological Vector Spaces, I, Grundlehren der Mathematischen Wissenschaften, 159, Springer-Verlag, Berlin–Heidelberg–New York, 1983
[13] Krantz S. G., Parks H. R., “Distance to $\mathcal C^k$ hypersurfaces”, J. Differential Equations, 40 (1981), 116–120 | DOI | MR | Zbl
[14] Kytmanov A. M., Yakimenko M. Sh., “On holomorphic extension of hyperfunctions”, Siberian Math. J., 34 (1993), 1101–1109 | DOI | MR | Zbl
[15] Lions J. L., Magenes E., “Problèmes aux limites non homogènes, VII”, Ann. Mat. Pura Appl., 63:4 (1963), 201–224 | MR | Zbl
[16] Meschkowski H., Hilbertsche Räume mit Kernfunktion, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962 | MR | Zbl
[17] Miranda C., Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR
[18] Morimoto M., An Introduction to Sato's Hyperfunctions, American Mathematical Society, Providence, 1993 | Zbl
[19] Morrey C. B., Nirenberg L., “On the analyticity of the solutions of linear elliptic systems of partial differential equations”, Comm. Pure App. Math., 10 (1957), 271–290 | DOI | MR | Zbl
[20] Polking J. C., Wells R. O., “Boundary values of Dolbeault cohomology and a generalized Bochner-Hartogs theorem”, Abh. Math. Sem. Univ. Hamburg, 47 (1978), 3–24 | DOI | MR | Zbl
[21] Range R. M., Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1986 | MR
[22] Rudin W., Functional Analysis, McGraw-Hill, New York, 1973 | MR | Zbl
[23] Spivak M., A Comprehensive Introduction to Differential Geometry, V. I, Publish or Perish, Boston, 1970
[24] Stein E. M., Boundary Behavior of Holomorphic Functions, Princeton University Press, Princeton, 1972 | MR | Zbl
[25] Stout E. L., “The multiplicative Cousin problem with bounded data”, Ann. Scuola Norm. Sup. Pisa, XXVII (1973), 1–17 | MR
[26] Stout E. L., “Removable singularities for the boundary values of holomorphic functions”, Several Complex Variables, Proceedings of the Mittag-Leffler Institute, 1987–1988, Princeton University Press, Princeton, 1993, 600–629 | MR
[27] Walsh J. L., “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. American Math. Soc., 35 (1929), 499–544 | DOI | Zbl
[28] Zorn P. M., Analytic Functionals and Bergman Spaces, Thesis, University of Washington, Seattle, 1981
[29] Zorn P. M., “Analytic functionals and Bergman spaces”, Ann. Scuola Norm. Sup. Pisa, IX (1982), 365–404 | MR | Zbl