Hamiltonian links in three-dimensional manifolds
Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1193-1205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider links formed by stable and saddle trajectories on a level surface of an integrable Hamiltonian system. We give a description of these links for an arbitrary three-dimensional manifold.
@article{IM2_1995_59_6_a4,
     author = {K. N. Mishachev},
     title = {Hamiltonian links in three-dimensional manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {1193--1205},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a4/}
}
TY  - JOUR
AU  - K. N. Mishachev
TI  - Hamiltonian links in three-dimensional manifolds
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 1193
EP  - 1205
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a4/
LA  - en
ID  - IM2_1995_59_6_a4
ER  - 
%0 Journal Article
%A K. N. Mishachev
%T Hamiltonian links in three-dimensional manifolds
%J Izvestiya. Mathematics 
%D 1995
%P 1193-1205
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a4/
%G en
%F IM2_1995_59_6_a4
K. N. Mishachev. Hamiltonian links in three-dimensional manifolds. Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1193-1205. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a4/

[1] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[2] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR | Zbl

[3] Matveev S. V., Fomenko A. T., Sharko V. V., “Kruglye funktsii Morsa i izoenergeticheskie poverkhnosti urovnya integriruemykh gamiltonovykh sistem”, Matem. sb., 135(177):3 (1988), 325–345 | MR | Zbl

[4] Fomenko A. T., Nguen Ten Zung, “Topologicheskaya klassifikatsiya nevyrozhdennykh integriruemykh gamiltonovykh sistem na trekhmernoi sfere”, UMN, 45:6 (1990), 91–111 | MR | Zbl

[5] Fomenko A. T., Simplekticheskaya geometriya, Izd-vo MGU, M., 1988 | MR | Zbl

[6] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[7] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[8] Casasayas J., Martinez Alfaro J., Nunes A., Knots and links in integrable hamiltonian systems, Preprint

[9] Waldhausen F., “Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I; II”, Invent. Math., 4:2 (1967) | DOI | MR | Zbl

[10] Wada M., “Closed orbits of non-singular Morse–Smale flows on $S^3$”, J. Math. Soc. Japan, 41:3 (1987), 405–413 | DOI | MR