Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_59_6_a4, author = {K. N. Mishachev}, title = {Hamiltonian links in three-dimensional manifolds}, journal = {Izvestiya. Mathematics }, pages = {1193--1205}, publisher = {mathdoc}, volume = {59}, number = {6}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a4/} }
K. N. Mishachev. Hamiltonian links in three-dimensional manifolds. Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1193-1205. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a4/
[1] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR
[2] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR | Zbl
[3] Matveev S. V., Fomenko A. T., Sharko V. V., “Kruglye funktsii Morsa i izoenergeticheskie poverkhnosti urovnya integriruemykh gamiltonovykh sistem”, Matem. sb., 135(177):3 (1988), 325–345 | MR | Zbl
[4] Fomenko A. T., Nguen Ten Zung, “Topologicheskaya klassifikatsiya nevyrozhdennykh integriruemykh gamiltonovykh sistem na trekhmernoi sfere”, UMN, 45:6 (1990), 91–111 | MR | Zbl
[5] Fomenko A. T., Simplekticheskaya geometriya, Izd-vo MGU, M., 1988 | MR | Zbl
[6] Fomenko A. T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[7] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[8] Casasayas J., Martinez Alfaro J., Nunes A., Knots and links in integrable hamiltonian systems, Preprint
[9] Waldhausen F., “Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I; II”, Invent. Math., 4:2 (1967) | DOI | MR | Zbl
[10] Wada M., “Closed orbits of non-singular Morse–Smale flows on $S^3$”, J. Math. Soc. Japan, 41:3 (1987), 405–413 | DOI | MR