On the generalized Hua problem
Izvestiya. Mathematics, Tome 59 (1995) no. 6, pp. 1149-1171
Cet article a éte moissonné depuis la source Math-Net.Ru
We determine the precise value of the exponent of convergence of the improper integral $$ \gamma_1=\int _{\mathbb R^r}\biggl|\int_0^1e^{2\pi if(x)}\,dx\biggr|\,d\alpha_1\dots d\alpha_r, $$ where $f(x)=\alpha_1x^{C_1}+\dots+\alpha_rx^{C_r}$, $0$ are arbitrary real numbers.
@article{IM2_1995_59_6_a2,
author = {A. Zrein},
title = {On the generalized {Hua} problem},
journal = {Izvestiya. Mathematics},
pages = {1149--1171},
year = {1995},
volume = {59},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a2/}
}
A. Zrein. On the generalized Hua problem. Izvestiya. Mathematics, Tome 59 (1995) no. 6, pp. 1149-1171. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a2/
[1] Hua L. K., “On Tarry's problem”, Quart. J. Math., 9 (1938), 315–320 | DOI | Zbl
[2] Hua L. K., “On the number of solutions of Tarry's problem”, Acta Scientia Sinica, 1 (1952), 1–70 | MR
[3] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR
[4] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., “Tochnaya otsenka chisla reshenii odnoi sistemy diofantovykh uravnenii”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1187–1226 | MR | Zbl
[5] Zrein A., Osobye integraly v additivnykh zadachakh varingovskogo tipa, Dis. ...kand. fiz.-mat. nauk, Izd-vo MGU, M., 1993